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Abstract

We consider the weighted model counting task
which includes important tasks in graphical
models, such as computing the partition func-
tion and probability of evidence as special cases.
We propose a novel partition-based bounding al-
gorithm that exploits logical structure and gives
rise to a set of inequalities from which upper
(or lower) bounds can be derived efficiently.
The bounds come with optimality guarantees
under certain conditions and are oblivious in
that they require only limited observations of
the structure and parameters of the problem.
We experimentally compare our bounds with
the mini-bucket scheme (which is also oblivi-
ous) and show that our new bounds are often
superior and never worse on a wide variety of
benchmark networks.

1 INTRODUCTION

Logic and probability theory are formalisms employed for
the task of automated reasoning. Logic facilitates deter-
ministic representations and decisions, while probability
theory accommodates situations where uncertainty arises.
Propositional logic (Boolean satisfiability) is a prominent
construct for performing deductive reasoning, particularly
within a combinatorial setting. Extensive research efforts
have resulted in state-of-the-art satisfiability solvers that
have been successfully deployed in fields such as soft-
ware/hardware model checking, planning and cybersecu-
rity (Zhang and Malik, 2002). Graphical models (GM)
have emerged as an effective scheme for modeling uncer-
tainty. For example, Bayesian networks (Pearl, 1988) have
been used in medical domains, while Markov networks
are widely used in areas such as computer vision and nat-
ural language processing. However, in order to effectively

model problems in real-world domains, it is of great prac-
tical interest to solve the harder problem of developing
models with the capacity to account for knowledge that is
both deterministic and uncertain in an unified manner.

Propositional model counting is the generalization of the
Boolean satisfiability problem. Extending the task of de-
termining satisfiability, the objective is to count the num-
ber of distinct instances that result in satisfiability. This
is also referred to as solution counting. Counting is a fun-
damental aspect to probabilistic computations (sum infer-
ence) and thus propositional model counting provides an
intuitive connection between logic and uncertainty. In this
paper, we address a further extension, namely the problem
of weighted model counting (WMC). WMC allows for
additional probabilistic interpretations of the variables in
the model by associating a weight function either at the
variable level or the clause level (Chavira and Darwiche,
2008; Gogate and Domingos, 2010; Sang et al., 2005).

It is well known that probabilistic inference in GM can be
reduced to WMC (Chavira and Darwiche, 2008). The re-
duction has two main components: (1) encode the GM as
a propositional knowledge base; and (2) leverage state-of-
the-art propositional model counters to develop a WMC-
based algorithm for solving the desired inference task.
However, a major drawback of the aforementioned meth-
ods is that they are computationally intractable for most
real-world problems. Therefore, developing fast, scalable
approximate schemes is a subject of fundamental interest.

While there exists several approaches to propositional
approximate counting, most of those are intrinsically
stochastic (Ermon et al., 2013; Gogate and Dechter, 2007,
2011), and little attention has been given to deterministic
methods that can bound estimates with correctness guar-
antees. In this paper we propose a deterministic bound-
ing scheme for WMC. Our approach is partition-based
(Dechter and Rish, 2003) and gives rise to a novel class of
inequalities from which upper (or lower) bounds can be
derived efficiently. In addition, the bounds are oblivious,



i.e. they require only limited observations of the structure
and parameters of the problem, which yields fast methods.

Specifically, we extend the work of Gatterbauer and Suciu
(Gatterbauer and Suciu, 2014, 2017), which is applicable
to only monotone SAT formulas, to the task of WMC for
arbitrary (non-monotone) formulas. Our method is related
to the class of bounded complexity inference schemes
such as mini-buckets (MB) (Dechter and Rish, 2003) and
their extensions (Choi et al., 2007; Liu, 2014). MB relaxes
the original problem by decomposing it into local sub-
problems (by splitting/dissociating nodes) that are then
solved exactly. The result is an approximate scheme that
generates bounds for various inference tasks.

We make the following contributions. (1) We analyze the
idea of dissociation based oblivious bounds (Gatterbauer
and Suciu, 2014) using the framework of weighted model
counting and extend it to the general non-monotone case;
(2) we take advantage of logical structure and derive a
novel set of inequalities for bounding methods that dis-
sociate until the formula has a tree structure (namely the
i-bound in MB is equal to 1); (3) we theoretically com-
pare the idea of dissociation with MB and show that MB
bounds are a special case of our bounds and can be quite
inferior; and (4) we empirically demonstrate that dissoci-
ation based bounds are more accurate than MB on several
synthetic and real-world datasets.

2 BACKGROUND

Let X,Y, etc. be sets of propositional variables that take
values (i.e., truth assignments) from the set {false, true}
(or {0, 1}). Given X = {X1, . . . , Xn}, let Ω be the set of
the 2n truth assignments to X. Let x = (x1, . . . , xn) ∈ Ω
be a truth assignment to all variables in X s.t. Xi = xi.
We use the symbol ‘∗’ to denote the case when Xi can
take either values, namely (0 ∨ 1) or otherwise known as
the don’t care condition. Let F be a propositional formula
in conjunctive normal form (CNF) over X, i.e. F is a
conjunction of clauses, where a clause is a disjunction
of literals, and each literal is defined as a variable Xi

(positive literal, +) or its negation Xi (negative literal,
−). Let C be the set of clauses of F . In this paper, we
will focus on arbitrary (non-monotone) CNF.

Definition 1. (Monotonicity). A formula F is “monotone
in variable Xi” iff Xi appears in F as either positive or
negative (but not both). A formulaF is “monotone” iff it is
monotone in all variables. Otherwise F is non-monotone.

2.1 WEIGHTED MODEL COUNTING

Given a propositional formula F , a satisfying assignment
or model of F is a truth assignment to all variables in

F such that F evaluates to true (x |= F ). The problem
of determining if there exists a satisfying assignment x
for F is called the Boolean satisfiability problem or SAT.
Propositional model counting or #SAT is the task of com-
puting the number of models of F . This is the canonical
#P-complete problem that generalizes SAT.

Weighted model counting (WMC) (Chavira and Darwiche,
2008; Sang et al., 2005) extends model counting by as-
sociating the following probability distribution (weight
function) φi to each propositional variable Xi:

φi(Xi) =

{
pi if Xi evaluates to 1
pi otherwise

,

where pi ∈ [0, 1] and pi , 1−pi.1 The functions φi yield
a weighted representation F of the CNF F and is called
WCNF. Formally,F is a triple 〈X,Φ,C〉, where X is a set
of n Boolean variables in F , Φ is a set of weight functions
φi associated with each Boolean variable Xi ∈ X and
C is a set of clauses of F . F represents the following
probability distribution

PF (x) =

{
1

ZF

∏n
i=1 φi(Xi = xi) if x |= F

0 otherwise
,

where ZF is the partition function, also referred to as the
weighted model count (WMC) of F , and is given by

ZF =
∑

(x∈Ω∧x|=F )

n∏
i=1

φi(Xi = xi).

When pi = 1/2 for all variables, the product 2nZF equals
the special case of (unweighted) model count of F .

2.2 GRAPHICAL MODELS

Graphical models (GM) provide a compact representation
of joint probability distributions over a set of variables X.
For simplicity, we will focus on pairwise binary Markov
networks since every GM can be converted to this form
(cf. (Koller and Friedman, 2009)). Let I ⊆ A where A
denotes the set of all pairs (i, j) such that i < j and
1 ≤ i, j ≤ n. In a pairwise graphical model, we associate
a potential function ψi,j over each pair (i, j) ∈ I. The
probability distribution is given by

P (x) =
1

Z

∏
(i,j)∈I

ψi,j(xi, xj),

where Z is the normalization constant (partition function)
and (xi, xj) is the projection of x on {Xi, Xj}.

1WMC is typically defined by attaching weights to liter-
als, and the corresponding potential function over each variable
is constructed by exponentiating the weights. We consider an
equivalent representation in which the potential function is nor-
malized to yield a probability distribution.



Table 1: Clauses for W2CNF Encoding of a GM

(Xi ∨ Yi,j,1) (Xj ∨ Yi,j,1)
(Xi ∨ Yi,j,2) (Xj ∨ Yi,j,2)
(Xi ∨ Yi,j,3) (Xj ∨ Yi,j,3)
(Xi ∨ Yi,j,4) (Xj ∨ Yi,j,4)

2.3 WCNF ENCODING OF A GM

We describe here a possible translation from GM to
WCNF. For more details see (Chavira and Darwiche,
2008; Gogate and Domingos, 2010, 2016). Since we focus
on pairwise binary GMs, we can convert them to WCNFs
in which each clause has at most two literals. We will
refer to such WCNFs as W2CNF.

Given a GM, we can construct an equivalent W2CNF as
follows. We start with a W2CNF F defined over the vari-
ables X of the GM such that the set of clauses C of
F is empty and pXi

= 0.5 for each variable Xi ∈ X.
Then, for each pairwise binary potential ψi,j in the GM
such that ψij : Xi = 0, Xj = 0 → wi,j,1, ψij : Xi =
0, Xj = 1 → wi,j,2, ψij : Xi = 1, Xj = 0 → wi,j,3,
ψij : Xi = 1, Xj = 1 → wi,j,4, we add a variable for
each weight to F . We will denote the variables associ-
ated with wi,j,1, wi,j,2, wi,j,3 and wi,j,4 by Yi,j,1, Yi,j,2,
Yi,j,3 and Yi,j,4 respectively. Utilizing these weight vari-
ables, we add the the clauses given in Table 1 to C for
k = 1, . . . , 4. We also add the following probability dis-
tribution for each variable Yi,j,k

φ(yi,j,k) =

{
wi,j,k−1
wi,j,k

if yi,j,k is false or 0
1

wi,j,k
otherwise

.

Note that when wi,j,k < 1, φ(yi,j,k) will be negative. To
avoid this condition, we can easily rescale the potentials
of the GM by multiplying them with an appropriate con-
stant. Also, zero weights can be handled by adding the
corresponding negated assignment as a clause to C. For
example, if wi,j,1 = 0, we add the clause Xi ∨ Xj to
C. Using previous work (Chavira and Darwiche, 2008;
Gogate and Domingos, 2010), it is straight-forward to
show that:

Proposition 2. W2CNF output by Encoding 1 represents
the same probability distribution over X as the input GM.

2.4 MINI-BUCKET ELIMINATION

We can utilize inference algorithms such as bucket or
variable elimination (Dechter, 1996; Zhang and Poole,
1994) to compute the weighted model count of a W2CNF.
However, since the complexity of using such algorithms
is in general exponential in the treewidth, a more prac-
tical approach is to approximate the task by introducing

relaxations techniques that control model complexity (i.e.,
the induced width given a fixed elimination order). Mini-
bucket (MB) (Dechter and Rish, 2003) is one such approx-
imate scheme that builds on bucket elimination (BE) for
generating upper (or lower) bounds on the partition func-
tion or weighted model count. We will use the following
running example to illustrate BE and MB for WMC.
Example 3. Consider the W2CNF F such that X =
{X1, Y2, Y3}, C = {(X1 ∨ Y2), (X1 ∨ Y3)} and Φ =
{φ1, φ2, φ3}. For simplicity we denote φ1 for φ1(X1),
etc. We can convert the clauses and potentials of F to the
following two potentials yielding a more convenient form
for BE.

X1 Y2 ψ12(X1, Y2)
0 0 0
0 1 p1p2

1 0 p1p2

1 1 p1p2

X1 Y3 ψ13(X1, Y3)
0 0 0
0 1 p3

1 0 p3

1 1 p3

Without loss of generality, we assume the elimination
ordering as [X1, Y2, Y3] (although it is clearly not op-
timal, it will help us illustrate the main ideas). BE be-
gins by creating |X| number of buckets and groups the
functions by placing each function involving some vari-
able Xi (or Yi in our example) in a bucket BXi

accord-
ing to the position of Xi in the ordering. The resulting
computation is ZBE

F =
∑

Y3

∑
Y2

∑
X1
ψ12ψ13 where

BX1
= {ψ12, ψ13} is first processed by taking the prod-

uct of the two potentials and summing out variable X1.
The resulting new potential ψ′23 is placed in bucket BY2

in
which variable Y2 is summed out. Summing out Y3 from
the subsequent function ψ′3 yields ZBE

F .

MB follows similarly. However, MB partitions each bucket
into two or more so called mini-buckets according to an
input parameter called the i-bound, which defines the
maximum number (i-bound + 1) of variables in each
mini-bucket. The mini-buckets are then processed inde-
pendently. To obtain an upper bound, the sum-product
operation is performed on one of the mini-buckets and
the max-product for the remaining (min-product for lower
bound). Using i-bound = 1, BX1 is split into two mini-
buckets B′X1

= {ψ12} and B′′X1
= {ψ13}. One possible

resulting computation is∑
Y3Y2

(∑
X1

ψ12

)(
min
X1

ψ13

)
︸ ︷︷ ︸

Z
MB(L)
F

≤
∑
Y3

∑
Y2

∑
X1

ψ12ψ13

≤
∑
Y3Y2

(∑
X1

ψ12

)(
max
X1

ψ13

)
︸ ︷︷ ︸

Z
MB(U)
F

,

where the MB upper bound on the partition function,



Z
MB(U)
F , is computed by maxing out X1 from ψ13 inde-

pendently from summing out X1 from ψ12. Summing out
Y2 and Y3 from the resulting two new potentials, ψ′2, ψ

′
3,

and taking their product gives the upper bound. The lower
bound, ZMB(L)

F , is computed similarly using min instead
of max.

MB is a fast and simple algorithm for computing upper
(or lower) bounds. The resulting complexity of inference
is exponential in the i-bound. Lower i-bound values trans-
lates to simpler models and provides the trade-off between
complexity and accuracy.

Next, we present the idea of dissociation based oblivious
bounds for the case of monotone W2CNF and extend it to
the non-monotone case by exploiting logical structure in
Section 4. As mentioned earlier, in this paper, we focus
on the case where variables are dissociated until the re-
sulting formula is a tree. In other words, our scheme is
comparable to the case when the i-bound in MB equals 1.

3 DISSOCIATION

Our task is to compute the WMC ZF of a given WCNF
F . Since the problem is computationally intractable in
general (e.g., high treewidth), approximate methods are
required. In this paper we use a bounded inference ap-
proach, where we approximate the original F with F ′
from which the upper (or lower) bounds on ZF can be
computed efficiently. We build upon (Gatterbauer and Su-
ciu, 2014, 2017) which presents a bounding scheme called
dissociation that can be applied to WMC. The derived
bounds are oblivious to the set of weight functions φi, i.e.
they can be calculated by only observing a limited subset
of clauses. However, these bounds only apply to mono-
tone formulas, whereas we are interested in extending the
underlying ideas to more general non-monotone formulas
(Section 4). Here, we first give a general intuition of prior
results followed by the formal definition and then present
optimal oblivious bounds for monotone formulas.

At a high level, dissociation is the process of replac-
ing an existing variable Xi in F with new variables
Xi;1, . . . , Xi;d and assigning them new probability dis-
tributions. The technique is closely related to variable
or node splitting (Choi et al., 2007) in which the new
variables are referred to as clones. The partitioning of
mini-buckets can also be classified under the general no-
tion of variable splitting.

By creating new variables, we are implicitly ignoring (or
relaxing) a set of equality constraints (Choi and Darwiche,
2009). However, we can recover the set by defining and in-
corporating the function ϕ(Xi;1 =xi;1, . . . , Xi;n =xi;d)
which evaluates to 1 iff xi;1 = . . . = xi;d, and 0 other-

wise, for the d copiesXi;j , j ∈ [d] of variableXi, and xi;j
being the corresponding truth assignment. We can also
incorporate equivalence clauses for each new pair of vari-
ables into a formula with the new clauses. For example,
consider the formula F = (X1 ∨ Y1)(X1 ∨ Y2). We can
create the equivalent formula F ′ = (X1;1 ∨ Y1)(X1;2 ∨
Y2)(X1;1 ⇔ X1;2) using copies ofX1 for the unweighted
model counting case. We see two issues arising. First, for
general 2-CNF formulas, we will require d− 1 equality
constraints (equivalence (⇔) formulas). Second, it is not
immediately clear on how to integrate the weight func-
tions so that weighted model counts can be computed
using this scheme.

Dissociation expands on the notion of variable duplication
and provides an algebraic framework to analyze and ap-
proximate the aforementioned set of equality constraints.
The result is a novel class of inequalities to construct up-
per (or lower) bounds on the WMC. We first give the
formal definition of dissociation for W2CNF.

Definition 4. (Dissociation). Let F = 〈X,Φ,C〉. Select
a variable Xi ∈ X and let C(Xi) ⊆ C be the subset
of all clauses that involve variable Xi. We say F ′ =
〈X′,Φ′,C′〉 is a dissociation of F on Xi iff

• X′ = X \Xi ∪Xi;1 ∪ · · · ∪Xi;d with d ≤ |C(Xi)|,

• Φ′ = Φ \ φi ∪ φi;1 ∪ · · · ∪ φi;d, and

• C′[θXi(X
′)] = C[X] with θXi being the substitu-

tion θXi [{(Xi;j/Xi), j ∈ [d]}].

We say a dissociation is full if d = |C(Xi)|.
Example 5. (Dissociation). Consider F from example
3. Dissociating X1 results in adding two new variables,
X′ = X \ X1 ∪ X1;1 ∪ X1;2, and two new associated
weight functions Φ′ = Φ \ φ1 ∪ φ1;1 ∪ φ1;2. Applying
the substitution θX1

[(X1;1/X1), (X1;2/X1)] on C(Xi)
results in C′ = C \C(Xi)∪ (X1;1 ∨Y2)∪ (X1;2 ∨Y3).

Once we have defined the new weight functions (for dis-
sociated variables), the question we are interested in is
how to parameterize the new functions in order to ob-
tain guaranteed upper (or lower) bounds. In particular,
we are interested in oblivious bounds, i.e. when the new
probabilities are chosen independently of the probabili-
ties of all other variables. We achieve that by considering
all possible valuations (or truth assignments) of the non-
dissociated variables, The assignments give rise to a set of
inequalities which are then evaluated to develop necessary
and sufficient conditions for upper (or lower) bounds. We
next illustrate with an example.

Example 6. (Oblivious bounds). Consider the two sets of
clauses, {(X1∨Y2), (X1∨Y3)} and {(X1;1∨Y2), (X1;2∨
Y3)} from examples 3 and 5. We analyze the 22 = 4 pos-
sible truth assignments to the non-dissociated variables



Table 2: Dissociation valuation analysis (example 6).

Y2 Y3 X1 X1;1 X1;2 φ1 φ1;1, φ1;2

0 0 1 1 1 p1 p1;1p1;2

0 1 1 1 ∗ p1 p1;1

1 0 1 ∗ 1 p1 p1;2

1 1 ∗ ∗ ∗ 1 1

Y2 and Y3. Table 2 shows each possible valuation of Y2

and Y3 and the corresponding assignments to X1, X1;1

and X1;2 required to satisfy the clauses. We also show the
weights (probabilities) of the original (column φ1) and
dissociated formulas (column φ1;1φ1;2).

As example, consider the assignment, Y2 = 0∧Y3 = 1:
The assignment X1 = 1 is required to satisfy F , result-
ing in the term p1p2p3. The assignments (X1;1 = 1 ∧
X1;2 = 0) or (X1;1 = 1 ∧ X1;2 = 1) are required to sat-
isfy F ′, i.e. X1;2 can take any assignment (∗), resulting
in the term p1;1p2p3. Utilizing the two terms, simplifying
by removing the common terms (p2p3) and assuming that
we are interested in computing lower bounds, we create
the inequality p1 ≥ p1;1. Repeating the same analysis
for the three remaining cases results in the inequalities
p1 ≥ p1;1p1;2 and p1 ≥ p1;2. The last case 1 ≥ 1 is
trivially satisfied. Combining the resulting inequalities,
and doing a similar analysis for computing upper bounds
(where we replace ≥ by ≤) gives rise to the following
conditions for oblivious (U)pper and (L)ower bounds:

• U: (p1 ≤ p1;1p1;2) ∧ (p1 ≤ p1;1) ∧ (p1 ≤ p1;2).

• L: (p1 ≥ p1;1p1;2) ∧ (p1 ≥ p1;1) ∧ (p1 ≥ p1;2).

Notice the valuation process creates 2|C(Xi)| inequalities,
one for each truth assignment. However, we can simplify
the conditions by removing subsumed inequalities.

Definition 7. (Subsumed inequality). We say an inequal-
ity Ii subsumes inequality Ij (i 6= j) iff Ii ⇒ Ij , i.e.
satisfying Ii also satisfies Ij .

Example 8. Consider the upper and lower bound con-
ditions in example 6. For the upper bound, clearly
p1 ≤ p1;1p1;2 subsumes the remaining inequalities since
∀p1, p1;1, p1;2 ∈ [0, 1] : (p1 ≤ p1;1p1;2) ⇒ (p1 ≤
p1;1) ∧ (p1 ≤ p1;2). For the lower bound, clearly (p1 ≥
p1;1) ∧ (p1 ≥ p1;2) subsumes the remaining inequal-
ity since ∀p1, p1;1, p1;2 ∈ [0, 1] : ((p1 ≥ p1;1) ∧ (p1 ≥
p1;2)) ⇒ (p1 ≥ p1;1p1;2). Therefore, we can reduce the
required conditions for the oblivious bounds to:

• U: p1 ≤ p1;1p1;2.

• L: (p1 ≥ p1;1) ∧ (p1 ≥ p1;2).

Following the preceding analysis, we can now state the
conditions for oblivious bounds for monotone W2CNF.

Theorem 9. (Gatterbauer and Suciu, 2014) (Oblivious
bounds for monotone W2CNF). Let F be a monotone
W2CNF. Let F ′ be the result of applying a series of dis-
sociation steps on F . For every set of weight functions
defined for a dissociate variable, namely Xi;1, . . . , Xi;d

and {φi;1, . . . , φi;d} with d > 1, we have the following
oblivious bounds:

• U:
∏d

j=1 pi;j ≥ pi.

• L: ∀j : pi;j ≤ pi.

Optimal oblivious bounds are defined as those that are not
dominated, i.e. they cannot be improved without knowl-
edge of the probabilities of all other variables. They are
obtained by replacing inequality with equality. Notice
that optimal oblivious lower bounds are uniquely de-
fined, ∀j : pi;j = pi, whereas there are infinitely many
optimal oblivious upper bounds, e.g. symmetric ones:
∀j : pi;j = d

√
pi, and finding the best one requires ac-

cess to all other probabilities (den Heuvel et al., 2018).

Note that optimal oblivious bounds are different from
augmented mini-buckets (AMB) (Liu, 2014). For exam-
ple, in AMB for computing upper bounds, the potential
over each dissociated variable is initialized to φi;j(Xi;j =
1) = φi(Xi = 1)1/d and φi;j(Xi;j = 0) = φi(Xi =
0)1/d where we have d dissociations. A better initializa-
tion would be φi;j(Xi;j = 1) = φi(Xi = 1)1/d, and
φi;j(Xi;j = 0) = 1− φi(Xi;j = 1)1/d.

3.1 COMPARISON WITH MINI-BUCKET

We use example 3 to analyze the base case bounds for
monotone dissociation (X1 to X1;1 and X1;2) and com-
pare it with MB (i-bound = 1).

Lower bound. Dissociation results in the partition func-
tionZDIS(U)

F ′ = p2p3+p1;1p2p3+p1;2p2p3+p1;1p1;2p2p3.
The two possible partition functions according to MB are
(1)
∑

X1
ψ1 minX1

ψ2 ⇒ Z
MB(L1)
F = p2p3 +p1p2p3; (2)

minX1 ψ1

∑
X1
ψ2 ⇒ Z

MB(L2)
F = p2 min(p1, p1)(1 +

p3). Clearly, ZDIS(L)
F ′ ≥ ZMB(L)

F ∀p1, p1;1, p1;2, p2, p3 ∈
[0, 1].

Upper bound. Notice there exist an infinite number
of settings to p1;1 and p1;2 that satisfy p1;1p1;2 = p1

under dissociation. We analyze two possible cases. (1)
(p1;1 = p1) ∧ (p1;2 = 1) ⇒ Z

DIS(U1)
F ′ = p1;1 + p1;1p2;

(2) (p1;2 = p1) ∧ (p1;1 = 1) ⇒ Z
DIS(U2)
F ′ = p1;2 +

p1;2p3. The two possible partition functions accord-
ing to MB are (1)

∑
X1
ψ1 maxX1

ψ2 ⇒ Z
MB(U1)
F =

p1 + p1p1; (2) maxX1 ψ1

∑
X1
ψ2 ⇒ Z

MB(U2)
F = (1 +

p3)(p2 max(p1, p1) + p1p1). We first observe the bounds
are equivalent between dissociation and MB in setting



(1) and also for (2) if the functions are unweighted (e.g.,
∀i pi = 1/2 ). However, note there exist more degrees
of freedom (solutions) for dissociation, and this exam-
ple simply demonstrates one such setting for which we
observe equivalency under certain conditions.

4 DISSOCIATION FOR
NON-MONOTONE FORMULAS

In this section, we extend dissociation bounds from the
monotone case to arbitrary non-monotone W2CNFs. Un-
like monotone W2CNFs, we can apply logical inference
techniques such as resolution and unit propagation to re-
duce non-monotone W2CNFs which in turn may improve
our dissociation-based bounds. Moreover, logical prop-
agation can be applied as a pre-processing step before
dissociating a variable Xi.

4.1 PREPROCESSING

We say that a W2CNF F is minimal if the following steps
are applied to its set of clauses C until convergence.

1. (Binary) Resolution: If C contains two clauses of
the form Li ∨Lj and Li ∨Lk, where Li, Lj and Lk

are literals of variables Xi, Xj and Xk respectively,
we add the clause Lj ∨ Lk to C.

2. Unit Resolution: If C contains two clauses of the
form Li ∨ Lj and Li ∨ Lj , where Li and Lj are
literals of variables Xi and Xj respectively, we add
the unit clause Lj to C.

3. Clause Deletion and Reduction: If C contains a
unit clause Li where Li is a literal of Xi then we
delete all clauses of the form Li ∨ Lj and remove
Li from all clauses that mention Li. If C contains
both unit clauses Li and Li, C is inconsistent and
we return a lower/upper bound of 0.2

Example 10 (Minimal formula). Consider C = {(X1 ∨
X2), (X1 ∨X2), (X2 ∨ Y4), (X1 ∨X3), (X3 ∨X5)}. C
is not minimal and we can make it minimal using the
aforementioned steps. After applying Unit Resolution on
the first two clauses, we getC = {(X1), (X1∨X2), (X1∨
X2), (X2 ∨ Y4), (X1 ∨X3), (X3 ∨X5)}. After applying
Clause deletion and Reduction, we get C = {(X1), (X2∨
Y4), (X3 ∨X5)}, which is minimal.

4.2 TYPES OF NON-MONOTONE FORMULAS

In the sequel, we assume that the input W2CNF F to
our algorithm is minimal. To formulate oblivious bounds
for non-monotone W2CNF, we first establish a canonical

2Note that our scheme will return an upper bound of 0 only
when C is inconsistent.

representation that helps us take advantage of symmetry
and reduces the number of cases (inequalities) we need to
consider for our proposed oblivious bounds. Specifically,
given a candidate dissociation variable Xi, we convert
the set of clauses C into a canonical representation:

Definition 11 (Canonical representation). We say that F
is canonical w.r.t. a variable Xi if F is minimal and all
clauses in C(Xi) satisfy the following two properties:

1. If a variable Yj appears only once in C(Xi) then it
only appears positively, i.e. it appears in clauses of
the form Xi ∨ Yj or Xi ∨ Yj (but not of the form
Xi ∨ Y j or Xi ∨ Y j).

2. If a variable Yj appears twice in C(Xi), then it
appears in the following two clauses Xi ∨ Yj and
Xi∨Y j (but not in the clausesXi∨Yj andXi∨Y j).

Note that since F is minimal, Yj cannot appear more than
twice in C(Xi), nor twice with the same sign. If C(Xi)
is not in canonical form, we can easily make it canonical
by using the following procedure:

• If Yj violates either condition (1) or (2) in definition
11, then replace Yj by a new variable Yk in all clauses
of F (where Yj appears) such that Yk = Y j , and set
φ(Yk) = φ(Yj) and φ(Yk) = φ(Yj).

Example 12 (Canonical representation). Consider C =
{(X1∨Y2), (X1∨Y2), (X1∨Y3)}. C is not in canonical
form w.r.t. X1 because Y2 and Y3 violate the second and
first property respectively in definition 11. To convert it to
canonical form, set Y4 = Y2, Y5 = Y3, φ(Y4) = φ(Y2),
φ(Y4) = φ(Y2), φ(Y5) = φ(Y3) and φ(Y5) = φ(Y3).
Thus, the canonical representation of C is the set {(X1 ∨
Y4), (X1 ∨ Y4), (X1 ∨ Y5)}.

We call variables Yj which appear only once in C(Xi)
single-occurrence neighbors of Xi and those which ap-
pear twice two-occurrence neighbors.

4.3 CHARACTERIZING OBLIVIOUS BOUNDS

We now derive oblivious bounds based on whether C(Xi)
has two-occurrence neighbors or not. In the following, let
F denote a W2CNF that is canonical w.r.t.Xi and letF ′ be
the result of applying a series of dissociation steps on F .
Let Yj be a single-occurrence neighbor ofXi. Let S+ and
S− denote the set of indices of the dissociated variables
that appear in clauses (Xi∨Yj) and (Xi∨Yj) respectively
inC(Xi). Let Yk be a two-occurrence neighbor ofXi. Let
T+ and T− denote the set of indices of the dissociated
variables in clauses Xi ∨ Yk and Xi ∨ Y k respectively in
C(Xi). (We use S and T to refer to “single-occurrence”
and “two-occurrence” variables, respectively.)

Example 13 (Indices). Consider C = {(X1 ∨
Y5), (X1 ∨ Y8), (X1 ∨ Y6), (X1 ∨ Y7), (X1 ∨ Y7), (X1 ∨



Y9), (X1∨Y9)}. After applying dissociation onX1, we get
C(X ′1) = {(X1;1∨Y5), (X1;2∨Y8), (X1;3∨Y6), (X1;4∨
Y7), (X1;5 ∨ Y7), (X1;6 ∨ Y9), (X1;7 ∨ Y9)}. Then S+ =
{1, 2}, S−={3}, T+ = {4, 6}, and T− = {5, 7}.

We next analyze the two possible non-monotone cases
in Theorems 14 and 16. The proofs are presented in an
extended version of the paper.

The first case is when C(Xi) has only single-occurrence
neighbors (but no two-occurrence neighbors). This gen-
eralizes the monotone case, in which only one type of
single-occurrence variables are present. In particular, in
the monotone case either clauses of the form (Xi ∨ Yj)
or (Xi ∨ Yj) are present but not both while in the non-
monotone case both clauses can be present in C(Xi).
Note that bounds given in Theorem 9 are a special case
of the bounds in Theorem 14 presented next.
Theorem 14. (Oblivious bounds for W2CNFs having only
single-occurrence neighbors w.r.t. Xi). For a given vari-
able Xi, if F contains only single-occurrence neighbors
but no two-occurrence neighbors then we have the follow-
ing oblivious bounds for Xi:

• U:
( ∏

j∈S+

pi;j ≥ pi
)
∧
( ∏

j∈S−
pi;j ≥ pi

)
• L: Either of following two conditions hold:

1.
(
∀j ∈ S+ : pi;j ≤ pi

)
∧
(
∀j ∈ S− : pi;j = 0

)
2.
(
∀j ∈ S− : pi;j ≤ pi

)
∧
(
∀j ∈ S+ : pi;j = 0

)
Optimal oblivious bounds are obtained by replacing in-
equality with equality in the bound conditions.
Example 15. Consider C(X ′1) = {(X1;1 ∨ Y2), (X1;2 ∨
Y3), (X1;3 ∨ Y4), (X1;4 ∨ Y5)}. Theorem 14 gives the
conditions for upper and lower oblivious bounds as:

• U:
(
p1;1p1;3 ≥ p1

)
∧
(
p1;2p1;4 ≥ p1

)
.

• L: Either of following two conditions hold:

1.
(
p1;1 ≤ p1

)
∧
(
p1;3 ≤ p1

)
∧
(
p1;2 = p1;4 = 0

)
2.
(
p1;2 ≤ p1

)
∧
(
p1;4 ≤ p1

)
∧
(
p1;1 = p1;3 = 0

)
Our second non-monotone case is when F has at least
one two-occurrence neighbor. Intuitively, dissociated vari-
ables which form clauses with two-occurrence neighbors
are more constrained than those that appear with single-
occurrence neighbors. Thus, there are more constraints
on probabilities associated with two-occurrence neigh-
bors (indexed by T+ and T−) than those associated with
single-occurrence neighbors (indexed by S+ and S−);
see conditions 1. and 2. in Theorem 16.
Theorem 16. (Oblivious bounds for W2CNFs having two-
occurrence neighbors w.r.t. Xi). For a given variable Xi,
if F contains at least one two-occurrence neighbor then
we have the following oblivious bounds for Xi:

Algorithm 1: (DIS) Dissociation Bounds for WMC
Input: W2CNF F = 〈X,Φ,C〉,

Variable ordering o = [X1, X2, . . . , X|X|]
Output: Lower (or upper) bound on the WMC
1. Initialize: ZB = 1 (Bound on the partition function)
2. for i = 1 to |X| do

2a. Convert F to a minimal F
2b. Convert C(Xi) to canonical form
2c. if C is inconsistent then

return 0
else if C(Xi) = {Xi} then

ZB = ZB × pi
else if C(Xi) = {Xi} then

ZB = ZB × pi
else if C(Xi) has two-occurrence neighbors then

Update ZB using Theorem 16
else if C(Xi) has single-occurrence neighbors then

Update ZB using Theorem 14

return ZB

• U:
( ∏

j∈(S+∪T+)

pi;j ≥ pi
)
∧
( ∏

j∈(S−∪T−)

pi;j ≥ pi
)

• L: Either of following three conditions hold:

1.
( ∏

j∈T+

pi;j ≤ pi
)
∧
(
∀j ∈ (S−∪T−) : pi;j = 0

)
2.
( ∏

j∈T−
pi;j ≤ pi

)
∧
(
∀j ∈ (S+∪T+) : pi;j = 0

)
3. If |T+| = |T−| = 1 and T+ = {a}∧T− = {b}:(

pi;a ≤ pi
)
∧
(
∀j ∈ S− : pi;j = 0

)
∧(

pi;b ≤ pi
)
∧
(
∀j ∈ S+ : pi;j = 0

)
Optimal oblivious bounds are obtained by replacing in-
equality with equality in the bound conditions.

Example 17. Consider C(X ′1) = {(X1;1 ∨ Y3), (X1;2 ∨
Y4), (X1;3 ∨ Y4), (X1;4 ∨ Y5)(X1;5 ∨ Y6)}. Theorem 16
gives the following conditions for upper and lower oblivi-
ous bounds:

• U:
(
p1;1p1;2p1;4 ≥ p1

)
∧
(
p1;3p1;5 ≥ p1

)
• L: Either of the following three conditions hold:

1. (p1;2 ≤ p1) ∧ (p1;3 = p1;5 = 0)

2. (p1;3 ≤ p1) ∧ (p1;1 = p1;2 = p1;4 = 0)

3. (p1;2 ≤ p1)∧(p1;3 ≤ p1)∧(p1;1=p1;4=p1;5 = 0)

Table 3 summarizes the oblivious bound conditions. The-
orems 14 and 16 yield the algorithm given in Algorithm 1
for bounding the partition function of a given W2CNF.



(a) (b) (c)

Figure 1: Upper bound estimates for dissociation DIS(U) and mini-bucket MB(U), and lower bound estimates for dissociation
DIS(L). Error bound by varying (a) grid size (b) level of determinism for 10×10 grid (c) 20×20 grid. Lower value is better.

Table 3: Summary of oblivious bound conditions. T :
whether C(Xi) has two-occurrence neighbors, S+ and
S−: whether C(Xi) has single-occurrence neighbors
which appear in clauses (Xi ∨ Yj) and (Xi ∨ Yj) re-
spectively. An entry in a cell means that neighbors of the
respective types are either present (

√
), absent (×), or ei-

ther present or absent (∗). Bold text in Case and Solution
columns denote novel contributions of this paper while
normal font text indicates previous work.

S+ S− T Case Solution
√

× × Monotone Theorems 9 & 14×
√

×√ √
× Single-occurrence Theorem 14

∗ ∗
√

Two-occurrence Theorem 16

5 EXPERIMENTS

We evaluated the performance of DIS (see Algo-
rithm 1) and compared it with MB on generated syn-
thetic datasets and benchmark datasets from the UAI
2008 probabilistic inference competition repository
(http://graphmod.ics.uci.edu/uai08) for the task of com-
puting upper and lower bounds on the weighted model
count (or partition function). All experiment were con-
ducted on quad-core Intel i7 based machines with 24GB
RAM running Ubuntu.

5.1 SYNTHETIC DATASETS

We generated non-monotone W2CNF formulas encoded as
m×m grid structure graphical models parameterized by
univariate and pairwise binary potentials. We then com-
pared error bound performance of DIS and MB (i-bound
= 1) from the aspects of (1) varying grid sizes under
random weight function settings; and (2) varying weight
function settings according to determinism strength un-
der fixed grid sizes. For each model, we computed the
true weighted model count Z∗. We then compared each
algorithm’s approximated bound Zalgo and calculated the
error bound as log(Z∗/Zalgo) for the lower bound and the

same negated for the upper bound. A lower error bound
value is better. For each setting, we generated 50 random
problem instances and ran DIS and MB 100 times for
each instance. From the 100 solutions, we selected the
best, namely either the lowest upper bound or the highest
lower bound. We then computed the average error bound
across the 50 problem instances.

Grid size. We generated m×m grids using values of
m = {5, 6, 7, . . . , 20}. For the weight function values, we
sampled from an uniform U(0, 1) distribution. We also
uniformly generated the clauses. The results are shown in
Figure 1a. For the upper bound, DIS noticeably begins to
outperform MB starting at around grid size 10×10 and the
performance gap widens as the grid size increases. Since
MB utilizes the max function, it has a higher tendency
to overestimate the upper bound. This was accomplished
only by setting the weight function values to the k-th
root (e.g., pX1;1 = pX1;2 =

√
pX1 for |C(X1)| = 2). We

would expect the performance gap to be wider, favoring
DIS, by optimizing the inequalities. For the lower bound,
MB produced 0 for all problems and thus was not plotted.
MB has a high tendency to converge to the so called
degenerate solution (i.e., 0) due to the min function. The
lower bound for DIS is tighter, as compared to the upper
bounds, since the settings to the lower bound inequalities
do not need to be optimized.

Determinism strength. We analyzed the performance
of DIS and MB according to various levels of determin-
ism, namely the distance from uniform .5 (unweighted)
towards 0 and 1. To accomplish this, we set all weight
functions to the same value pX ∈ {.5, .6, .7, .8, .9}. The
results are shown in Figures 1b and 1c. For the lower
bound, MB produced 0 for all problems and thus was not
plotted. The overall relative performance comparison is
similar to that of varying grid size. Again, the lower bound
performance for DIS is tighter and all bounds had higher
bound error as the determinism strength increased. Intu-
itively, as the gap between pXi and pXi widens, the ten-
dency to overestimate (underestimate) the upper (lower)
bound increases.



Table 4: The log relative upper bound between dissociation
DIS(U) and mini-bucket MB(U) on UAI 2008 repository prob-
lem instances. Lower value is better for DIS.

Instance log ZDIS(U)

ZMB(U) Instance log ZDIS(U)

ZMB(U)

sg2-17 −277.8 orc111 −87.6
sg7-11 −293.4 orc175 −96.3
sg8-18 −281.9 orc180 −124.4
sg9-24 −292.8 orc203 −111.0
sg17-4 −303.3 orc218 −4.4
smk10 −50.9 orc62 −393.4
smk20 −165.9 orc154 −97.0
orc42 −119.6 orc225 −137.3
orc45 −261.1 orc139 −155.0

Table 5: The log relative lower bound between ground truth and
Dissociation DIS(L) on UAI 2008 repository problem instances.
Lower value is better for DIS.

Instance log Z∗

ZDIS(L) Instance log Z∗

ZDIS(L)

sg2-17 732.4 orc111 209.8
sg7-11 759.4 orc175 342.6
sg8-18 727.3 orc180 375.0
sg9-24 774.5 orc203 346.8
sg17-4 752.1 orc218 18.2
smk10 191.3 orc62 −
smk20 799.8 orc154 354.7
orc42 407.9 orc225 499.7
orc45 747.8 orc139 576.6

5.2 UAI INFERENCE DATASETS

We also compared DIS to MB on the segmentation (sg),
promedas (orc) and smokers (smk) dataset from the UAI
2008 repository. The variables in the models are binary
and the number of variables range from ∼100 to 1000.
We converted the non-pairwise models to pairwise mod-
els and then encoded them as W2CNF. We used i-bound
= 1 for MB. We ran DIS and MB 100 times and sim-
ilarly, we selected the best. For the upper bound, we
evaluated using the log relative upper bound, namely
log(ZDIS(U)/ZMB(U)). Lower value is better for DIS.
The results are shown in Table 4. DIS outperforms MB
by a wide margin on the majority of the datasets. The
solution quality of DIS for sg was quite consistent while
for orc it had higher variance. For the lower bound, we
evaluated dissociation’s lower bound against the ground
truth, namely log(Z∗/ZDIS(L)). MB produced 0 for all
problems and thus was not shown. The results are shown
in Table 5 (orc62 was not tractable).

In summary, DIS performs consistently better than MB
on harder WMC problems. In particular, the lower bounds

output by DIS are always better than MB.

6 CONCLUSION AND FUTURE WORK

We proposed an approximate, oblivious bounding scheme
for WMC, extending the idea of dissociation to non-
monotone formulas and exploiting logical structure. Dis-
sociation yields a novel set of inequalities for which upper
and lower bounds can be derived efficiently. Empirically,
we showed that our method outperforms mini-buckets—a
popular oblivious bounding scheme—on various datasets.
The lower bounds are robust since they do not require
optimization (in the monotone case). For upper bounds,
we utilized naı̈ve settings, namely the k-th root applied to
the parameter of a dissociated variable.

For future work, we are interested in obtaining better
(tighter) upper and lower bounds. To do so, we can lever-
age four powerful complementary techniques described
in literature (cf. (Gogate and Domingos, 2011, 2013; Ih-
ler et al., 2012; Lam et al., 2014; Liu and Ihler, 2011;
Ping et al., 2015)): cost-shifting (or re-parameterization),
higher ibound, quantization and Hölder’s inequality. For
instance, applying Hölder’s inequality to our running
example (see Example 3) gives the optimization prob-
lem minω(pωX1

+ (pX1pY2)ω)1/ω(1 + p
(1−ω)
Y3

)(1/1−ω)

such that 0 ≤ ω ≤ 1. We can also apply Hölder’s
inequality to dissociation which alternatively gives
us the optimization problem minpX1;1

,pX1;2
,ω(pωX1;1

+

(pX1;1
pY2

)ω)1/ω(p
(1−ω)
X1;2

+(pX1;2
pY3

)(1−ω))(1/1−ω) such
that pX1;1

pX1;2
= pX1

and 0 ≤ ω ≤ 1. We are particu-
larly interested in developing algorithms to optimize the
latter problem and to determine which formulation will
consistently yield tighter upper and lower bounds. An-
other line of future work is investigating the utility of our
approach when applied to other inference tasks such as
maximum a posteriori (MAP) estimation and marginal
maximum a posteriori (MMAP) estimation.
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