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Abstract

We introduce a new set of problems based on the Chain Editing problem. In

our version of Chain Editing, we are given a set of participants and a set of

tasks that every participant attempts. For each participant-task pair, we know

whether the participant has succeeded at the task or not. We assume that

participants vary in their ability to solve tasks, and that tasks vary in their

difficulty to be solved. In an ideal world, stronger participants should succeed

at a superset of tasks that weaker participants succeed at. Similarly, easier tasks

should be completed successfully by a superset of participants who succeed at

harder tasks. In reality, it can happen that a stronger participant fails at a task

that a weaker participants succeeds at. Our goal is to find a perfect nesting of

the participant-task relations by flipping a minimum number of participant-task

relations, implying such a “nearest perfect ordering” to be the one that is closest

to the truth of participant strengths and task difficulties. Many variants of the

problem are known to be NP-hard.
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We propose six natural k-near versions of the Chain Editing problem and

classify their complexity. The input to a k-near Chain Editing problem includes

an initial ordering of the participants (or tasks) that the final solution is required

to be “close” to, by moving each participant (or task) at most k positions from

the initial ordering. We obtain surprising results on the complexity of the six k-

near problems: Five of the problems are polynomial-time solvable using dynamic

programming, but one of them is NP-hard.

Keywords: Chain Editing, Chain Addition, Truth Discovery, Massively Open

Online Classes, Student Evaluation

1. Introduction

1.1. Motivation

Consider a contest with a set S of participants who are required to complete

a set Q of tasks. Every participant either succeeds or fails at completing each

task. We aim to obtain rankings of the participants’ strengths and the tasks’5

difficulties. This situation can be modeled by a bipartite graph with participants

on one side, tasks on the other side, and edges present if a participant succeeded

at the task. From the edges of the bipartite graph, we can infer that a participant

a2 is stronger than a1 if the neighborhood of a1 is strictly contained in (or is

strictly “nested in”) that of a2. Similarly, we can infer that a task is easier10

than another if its neighborhood strictly contains that of the other. If two

participants or tasks have the same neighborhood, then they are considered

equally strong or equally easy. See Figure 1 for a visualization of strengths of

participants and difficulties of tasks. If all neighborhoods are nested, then this

nesting immediately implies a ranking of the participants and tasks. However,15

participants and tasks are not perfect in reality, which may result in a bipartite

graph with “non-nested” neighborhoods. For such more realistic scenarios, we

wish to determine a ranking of the participants and the tasks that is still “close”

to the ideal case. In this paper, we define several variants of this problem that

are different in what changes can be made (adding, deleting, or adding and20
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Figure 1: An “ideal” graph is shown. Participants and tasks may be interpreted as students

and questions, or actors and claims. Participant a1 succeeds at b1 to b2; a2 succeeds at b1 to

b4; a3 succeeds at b1 to b5. The nesting of neighborhoods here indicate that participant a1 is

weaker than a2, who is weaker than a3, and task b1 and b2 are easier than b3 and b4, which

in turn are easier than b5.

deleting edges) and prior knowledge of rankings (exact for one side, no prior

knowledge, nearby starting values) that together give rise to varying problem

complexities.

1.1.1. Relation to Truth Discovery.

A popular application of unbiased rankings is computational “truth disco-25

very.” Truth discovery is the determination of trustworthiness of conflicting

pieces of information that are observed often from a variety of sources [24] and

is motivated by the problem of extracting information from networks where the

trustworthiness of the actors are uncertain [15]. The most basic model of the

problem is to consider a bipartite graph where one side is made up of actors,30

the other side is made up of their claims, and edges denote associations between

actors and claims. Furthermore, claims and actors are assumed to have “trust-

worthiness” and “believability” scores, respectively, with known a priori values.

According to a number of recent surveys [15, 24, 20], common approaches for

truth discovery include iterative procedures, optimization methods, and proba-35

bilistic graphic models. (1) Iterative methods [9, 13, 22, 27] update trust scores

of actors to believability scores of claims, and vice versa, until convergence. Va-
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rious variants of these methods (such as Hubs and Authorities (or Sums) [18],

TruthFinder [27], AverageLog, Investment, and PooledInvestment [22]) have

been extensively studied and proven in practice [2]. (2) Optimization met-40

hods [3, 19] aim to find truths that minimize the total distance between the

provided claims and the output truths for some specified continuous distance

function; coordinate descent [5] is often used to obtain the solution. (3) Pro-

babilistic graphical models [23] of truth discovery are solved by expectation

maximization. Other methods for truth discovery include those that leverage45

trust relationships between the sources [14]. Our study is conceptually clo-

sest to optimization approaches (we minimize the number of edge additions or

edits), but we suggest a discrete objective for minimization, for which we need

to develop new algorithms.

1.1.2. Our Motivation: Massively Open Online Courses.50

Our interest in the problem arises from trying to model the problem of auto-

matic grading of large number of students in the context of MOOCs (massively

open online courses). Manual grading of assignments from many students is

infeasible. In turn, creating many automatically gradable questions (that are

also relevant to the topics of a class) is difficult. Our idea is to crowd-source55

the creation of automatically gradable questions (in particular, multiple choice

items) to students, and have all the students take all questions. In this context,

we do not know the difficulty of questions and would like to quickly compute a

roughly accurate ordering of the difficulty of the crowd-sourced questions from

the answers chosen by the students. Additionally, we also want to rank the60

strength of the students based on their performance. In an ideal world, stron-

ger participants should succeed at a superset of tasks that weaker participants

succeed at, which motivates our nesting property. In reality, it can happen

that a stronger participant fails at a task that a weaker participants succeeds

at. Our goal is to find a ranking of students and questions that “explains” our65

observations as much as possible and is thus a close to the ideal case as possible.
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1.1.3. Our Model.

Henceforth, we refer to participants as students and tasks as questions in

the rest of the paper. We cast the ranking problem as a discrete optimization

problem of minimizing the number of changes to a given record of the students’70

performance to obtain nested neighborhoods. This is called the Chain Editing

problem. It is often possible that some information regarding the best ranking

is already known. For instance, if the observed rankings of students on several

previous assignments are consistent, then it is likely that the ranking on the

next assignment will be similar. We model known information by imposing an75

additional constraint that the changes made to correct the errors to an ideal

ranking must result in a ranking that is near a given base ranking. By near,

we mean that the output position of each student should be within at most

k positions from the position in the base ranking, where k is a parameter.

Given a nearby ranking for the students, we consider all possible variants arising80

from how the question ranking is constrained. The question ranking may be

constrained in one of the following three ways: (i) the exact question ranking

is specified (which we term the “constrained” case), (ii) it must be near a

given question ranking (the “both near” case), or (iii) the question ranking is

unconstrained (the “unconstrained” case). We provide the formal definitions of85

these problems next.

1.2. Problem Formulations

Here, we define all variants of the ranking problem. The basic variants of

Chain Editing are defined first and the k-near variants are defined afterward.

1.2.1. Basic Variants of Chain Editing90

First, we introduce the problem of recognizing an “ideal” input. Assume

that we are given a set S of students, and a set Q of questions. Every student

attempts every question. Edges between S and Q indicate which questions

the students answered correctly. Denote the resulting bipartite graph by G =
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(S ∪ Q,E). Let n = |S| + |Q|. For every pair (s, q) ∈ S × Q, we are given an95

edge between s and q if and only if student s answered question q correctly.

For a graph (V,E), denote the neighborhood of a vertex x by N(x) := {y ∈

V : xy ∈ E}. In other words, the neighborhood of a question is the set of

student who answered the question correctly. Similarly, the neighborhood of a

student is the set of questions that the student answered correctly.100

Definition 1.1 (Strength and Difficulty). We say that student s1 is stronger

than student s2 if N(s1) ⊃ N(s2), and student s1 is equivalent to s2 if N(s1) =

N(s2). We say that question q1 is harder than question q2 if N(q1) ⊂ N(q2), and

question q1 is equivalent to question q2 if N(q1) = N(q2). Given an ordering α

on the students and β on the questions, α(s1) > α(s2) shall indicate that s1 is105

stronger than s2; β(q1) > β(q2) shall indicate that q1 is harder (more difficult)

than q2; α(s1) = α(s2) and β(q1) = β(q2) shall indicate that s1 is equivalent to

s2 and q1 is equivalent to q2, respectively.

Definition 1.2 (Interval and Nesting properties). An ordering of the questions

satisfies the interval property if for every student s, its neighborhood N(s) con-110

sists of a block of consecutive questions (starting with the easiest question) with

respect to the ordering of the questions. An ordering α of the students satisfies

the nesting property if α(s1) ≥ α(s2)⇒ N(s1) ⊇ N(s2).

Definition 1.3. The objective of the Ideal Mutual Orderings (IMO) problem

is to order the students and the questions so that they satisfy the interval and115

nesting properties respectively, or output NO if no such orderings exist.

Observe that IMO can be solved efficiently by comparing containment rela-

tion among the neighborhoods of the students and ordering the questions and

students according to the containment order.

Proposition 1.4. There is a polynomial time algorithm to solve IMO.120

Proof. Compare the neighborhood of every pair of students {s1, s2} ⊆ S and

check whether N(s1) ⊆ N(s2) or N(s1) ⊇ N(s2). If N(s1) ∩ N(s2) is a strict
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subset of N(s1) and N(s2), then output NO. Now, assuming that every pair

{s1, s2} ⊆ S satisfies N(s1) ⊆ N(s2) or N(s1) ⊇ N(s2), we know that there is

an ordering α : S → [|S|] such that α(s1) ≤ α(s2)⇒ N(s2) ⊆ N(s2). We easily125

find such an ordering by sorting the students according to their degrees, i.e.,

from lowest to highest degree, the students will receive labels from the smallest

to the largest. Denote the resulting ordering by π. Since all neighborhoods are

subsets or supersets of any other neighborhood and π was sorted by degree,

π(s1) ≤ π(s2)⇒ N(s1) ≤ N(s2). So we have satisfied the nesting property.130

To satisfy the interval property, we order the questions according to the nes-

ting of the neighborhoods. Recall that we have N(π−1(1)) ⊆ · · · ⊆ N(π−1(|S|)).

Now, we order the questions so that whenever q1 ∈ N(π−1(i)) and q2 ∈ N(π−1(j))

with i < j, we have q1 labeled smaller q2 according to the ordering. We can do

so by labeling the questions in N(π−1(1)) the smallest numbers (the ordering135

within the set does not matter), then the questions in N(π−1(2)) the next smal-

lest, and so on. Call the resulting ordering β. Note that for all s ∈ S, s = π−1(i)

for some i. So N(s) = N(π−1(i)) ⊇ N(π−1(1)), i.e., s correctly answers the

easiest question according to β. Furthermore, N(s) is a block of questions that

are consecutive according to the ordering β. So the interval property is also140

satisfied.

To determine the run time, note that we made O(n2) comparisons of neig-

hborhoods. Each set intersection of two neighborhoods took O(n) time assu-

ming that each neighborhood was stored as a sorted list of the questions (sorted

by any fixed labeling of the questions). Ordering the students by degree took145

O(n log n) time and ordering the questions took O(n) time. So the total run

time is O(n2).

Next, observe that the nesting property on one side is satisfiable if and only

if the interval property on the other side is satisfiable. Hence, we will require

only the nesting property in subsequent variants of the problem.150

Proposition 1.5. A bipartite graph has an ordering of all vertices so that the

questions satisfy the interval property if and only if it has an ordering with the
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students satisfying the nesting property.

Proof. First, we prove the forward direction. Assume that G = (S ∪ Q,E)

satisfies the interval property with respect to the ordering β on Q. By definition155

of interval property, for every u ∈ S, we have N(u) = {β−1(1), . . . , β−1(j)}

for some j ∈ [|Q|]. Then for every u1, u2 ∈ S, we have N(u1) ⊆ N(u2) or

N(u2) ⊆ N(u1). Let α be an ordering of S by degree of each u ∈ S. Then the

nesting property holds with respect to α.

Second, we prove the backward direction. Assume that G = (S ∪ Q,E)160

satisfies the nesting property with respect to α on S. Then N(α−1(1)) ⊆ · · · ⊆

N(α−1(|S|)). Using the algorithm in the proof of Proposition 1.4 for IMO, we

obtain an ordering β on Q so that the interval property holds with respect to

β.

Next, we define three variants of IMO, which model the possible ways we165

would allow changes to the edges in the graph in order to achieve the nesting

property: allowing edges to be added, or deleted, or both.

Definition 1.6 (Chain Editing (CE)). In the Chain Editing (CE) problem,

we are given a bipartite graph representing student-question relations and asked

to find a minimum set of edge edits that admits an ordering of the students170

satisfying the nesting property.

A more restrictive problem than Chain Editing is Chain Addition. Chain

Addition is variant of Chain Editing that allows only edge additions and no

deletions. Chain Addition models situations where students sometimes acciden-

tally give wrong answers on questions that they know how to solve but never175

answer a hard problem correctly by luck, e.g., in numerical entry questions.

Definition 1.7 (Chain Addition (CA)). In the Chain Addition (CA) problem,

we are given a bipartite graph representing student-question relations and asked

to find a minimum set of edge additions that admits an ordering of the students

satisfying the nesting property.180
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On the other hand, weak students may accidentally solve hard questions

correctly when the questions are multiple choice or true/false. Chain Deletion

models such situations.

Definition 1.8 (Chain Deletion (CD)). In the Chain Deletion (CD) problem,

we are given a bipartite graph representing student-question relations and asked185

to find a minimum set of edge deletions that admits an ordering of the students

satisfying the nesting property.

Among the three problems, Chain Addition and Chain Deletion are isomor-

phic, i.e., solving one enables us to solve the other. The key property that

connects Chain Addition with Chain Deletion is that a graph satisfies the nes-190

ting property if and only if its complement satisfies the nesting property. To

solve Chain Deletion on a graph G, consider the complement G of G and solve

Chain Addition on G. Let F be the set of edges in an optimal solution for

Chain Addition on G. By definition of complement, F must have been a subset

of the edges in G. Since G ∪ F satisfies the nesting property, its complement195

G ∪ F = G \ F must also satisfy the nesting property. So F is an optimal so-

lution for Chain Deletion on G. A symmetric argument applies to solve Chain

Addition from Chain Deletion. Since the addition and the deletion cases are

isomorphic, we consider only the addition and the more general edition, which

– together with the three constraint variants from subsection 1.1.3 – give rise200

to our 6 problem formulations.

Analogous to needing only to satisfy one of the two properties, it suffices to

find an optimal ordering for only one side. Once one side is fixed, it is easy to

find an optimal ordering of the other side respecting the fixed ordering.

Proposition 1.9. In Chain Editing, if the best ordering (that minimizes the205

number of edge edits) for either students or questions is known, then the edge

edits and ordering of the other side can be found in polynomial time.

Proof. Consider the special case that one side of the correct ordering is given

to us, say the questions are given in hardest to easiest order v1 ≥ · · · ≥ vq.
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Then we can find the minimum number of errors needed to satisfy the required210

conditions by correcting the edges incident to each student u individually.

We know by the interval property that every student u must correctly answer

either a set of consecutive questions starting from v1 or no questions at all. For

each u ∈ S, and for each vj , simply compute the number of edge edits required

so that the neighborhood of u becomes {v1, . . . , vj}. Select the question vu that215

minimizes the cost of enforcing {v1, . . . , vj} to be the neighborhood of u. Once

the edges are corrected, order the students by the containment relation of their

neighborhoods.

The algorithm correctly calculates the minimum edge edits since the interval

property was satisfied at the minimum cost possible per student. The algorithm220

finds the neighborhood of each student by trying at most |Q| < n difficulty

thresholds vj , and the cost of calculation for each threshold takes O(1), by

using the value calculated from the previous thresholds tried. Summing over

the |S| < n students gives a total running time no more than O(n2).

1.2.2. k-near Variants of Chain Editing or Addition225

We introduce and study the nearby versions of Chain Editing or Chain Ad-

dition. Our problem formulations are inspired by Balas and Simonetti’s [4] work

on k-near versions of the TSP.

Definition 1.10 (k-near CE or CA). In the k-near problem, we are given an

initial ordering α : S → [|S|] and a nonnegative integer k. A feasible solution230

exhibits a set of edge edits (additions) attaining the nesting property so that

the associated ordering π, induced by the neighborhood nestings, of the students

satisfies π(s) ∈ [α(s)− k, α(s) + k].

Next, we define three types of k-near problems. In the subsequent problem

formulations, we bring back the interval property to our constraints since we235

consider problems where the question side is not allowed to be arbitrarily orde-

red.
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Definition 1.11 (Unconstrained k-near CE or CA). In Unconstrained k-near

Chain Editing (Addition), the student ordering must be k-near but the question

side may be ordered any way. The objective is to minimize the number of edge240

edits (additions) so that there is a k-near ordering of the students that satisfies

the nesting property.

Definition 1.12 (Constrained k-near CE or CA). In Constrained k-near Chain

Editing (Addition), the student ordering must be k-near while the questions have

a fixed initial ordering that must be kept. The objective is to minimize the245

number of edge edits (additions) so that there is k-near ordering of the students

that satisfies the nesting property and respects the interval property according to

the given question ordering.

Definition 1.13 (Both k-near CE or CA). In Both k-near Chain Editing (Ad-

dition), both sides must be k-near with respect to two given initial orderings on250

their respective sides. The objective is to minimize the number of edge edits

(additions) so that there is a k-near ordering of the students that satisfies the

nesting property and a k-near ordering of the questions that satisfies the interval

property.

1.3. Main Results255

In this paper, we introduce k-near models to the Chain Editing problem

and present surprising complexity results. Our k-near model captures realistic

scenarios of MOOCs, where information from past tests is usually known and

can be used to arrive at a reliable initial nearby ordering.

We find that five of the k-near Editing and Addition problems have po-260

lynomial time algorithms while the Unconstrained k-near Editing problem is

NP-hard. Additionally, we provide an O(kn) additive approximation algorithm

for the NP-hard case. Our intuition is that the Constrained k-near and Both

k-near problems are considerably restrictive on the ordering of the questions,

which make it easy to derive the best k-near student ordering. The Unconstrai-265

ned k-near Addition problem is easier than the corresponding Editing problem
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because the correct neighborhood of the students can be inferred from the neig-

hborhoods of all weaker students in the Addition problem, but not for the

Editing version.

Aside from restricting the students to be k-near, we may consider all possible270

combinations of whether the students and questions are each k-near, fixed, or

unconstrained. The remaining (non-symmetric) combinations not covered by

the above k-near problems are both fixed, one side fixed and the other side

unconstrained, and both unconstrained. The both fixed problem is easy as

both orderings are given in the input and one only needs to check whether275

the orderings are consistent with the nesting of the neighborhoods. When one

side is fixed and the other is unconstrained, we have already shown that the

ordering of the unconstrained side is easily derivable from the ordering of the

fixed side via Proposition 1.9. If both sides are unconstrained, this is exactly

the Chain Editing (or Addition) problem, which are both known to be NP-hard280

(see below). Figure 2 summarizes the complexity of each problem, including

our results for the k-near variants, which are starred. Note that the role of the

students and questions are symmetric up to flipping the orderings.

To avoid any potential confusion, we emphasize that our algorithms are not

fixed-parameter tractable algorithms, as our parameter k is not a property of285

problem instances, but rather is part of the constraints that are specified for

the outputs to satisfy.

The remaining sections are organized as follows. Section 2 discusses existing

work on variants of Chain Editing that have been studied before. Section 3

shows the exact algorithms for five of the k-near problems, and includes the290

NP-hardness proof and an O(kn) additive approximation for the last k-near

problem. Section 4 summarizes our main contributions.

2. Related Work

The earliest known results on hardness and algorithms tackled Chain Ad-

dition. Since many results parameterize in terms of the value of an optimal295
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Questions

Students
Unconstrained

k-near
Constrained

Editing Addition

Unconstrained NP-hard [26, 10]

NP-hard

Thm 3.4,

O(kn)-approx

Thm 3.5

O(n324kk4k)

Thm 3.3
O(n2) Prop 1.9

k-near
Editing

NP-hard

Thm 3.4,

O(kn)-approx

Thm 3.5

O(n328kk8k+4)

Thm 3.6

Addition
O(n324kk4k)

Thm 3.3
O(n328kk8k+4)

Thm 3.7

O(n324kk4k+2)

Thm 3.2

Constrained O(n2) Prop 1.9 O(n324kk4k+2) Thm 3.2 O(n2)

Figure 2: All variants of the decision version of the problems are shown with their respective

complexities. The complexity of Unconstrained/Unconstrained Addition [26] and Editing [10]

were derived before. More detailed results for these cases will be shown in Figure 3. All

other results are given in this paper. Most of the problems have the same complexity for both

Addition and Editing versions. The only exception is the Unconstrained k-near version where

Editing is NP-hard while Addition has a polynomial time algorithm.

solution to their problem, we use OPT to denote the optimal value, where the

problem solved depends on the context. Before stating the results, we define

a couple of problems closely related to Chain Addition. The Minimum Linear

Arrangement problem considers as input a graph G = (V,E) and asks for an

ordering π : V → [|V |] minimizing
∑
vw∈E |π(v)− π(w)|. The Chordal Comple-300

tion problem, also known as the Minimum Fill-In problem, considers as input

a graph G = (V,E) and asks for the minimum size set of edges F to add to

G so that (V,E ∪ F ) has no chordless cycles. A chordless cycle is a cycle

(v1, . . . , vr, v1) such that for every i, j with |i − j| > 1 and {i, j} 6= {1, r}, we

have vivj /∈ E. Yannakakis [26] proved that Chain Addition is NP-hard by a305

reduction from Linear Arrangement. He also showed that Chain Addition is a

special case of Chordal Completion on graphs of the form (G = U ∪V,E) where

U and V are cliques. Recently, Chain Editing was shown to be NP-hard by
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Drange et al. [10].

Another problem called Total Chain Addition is essentially identical to Chain310

Addition, except that the objective function counts the number of total edges

in the output graph rather than the number of edges added. For Total Chain

Addition, Feder et al. [11] gave a 2-approximation. The total edge addition ver-

sion of Chordal Completion has an O(
√

∆ log4(n))-approximation algorithm [1]

where ∆ is the maximum degree of the input graph. For Chain Addition, Feder315

et al. [11] claimed an 8d+2-approximation, where d is the smallest number such

that every vertex-induced subgraph of the original graph has some vertex of de-

gree at most d. Natanzon et al. [21] gave an 8OPT -approximation for Chain

Addition by approximating Chordal Completion. However, no approximation

algorithms are known for Chain Editing.320

Modification to chordless graphs and to chain graphs have also been stu-

died from a fixed-parameter point of view. A fixed-parameter tractable (FPT)

algorithm for a problem of input size n and parameter p bounding the value of

the optimal solution, is an algorithm that outputs an optimal solution in time

O(f(p)nc) for some constant c and some function f dependent on p. For Chor-325

dal Completion, Kaplan et al. [17] gave an FPT in time O(2O(OPT )+OPT 2nm).

Fomin and Villanger [12] showed the first subexponential FPT for Chordal Com-

pletion, in time O(2O(
√
OPT logOPT ) + OPT 2nm). Cao and Marx [7] studied a

generalization of Chordal Completion, where three operations are allowed: ver-

tex deletion, edge addition, and edge deletion. There, they gave an FPT in time330

2O(OPT logOPT )nO(1), where OPT is now the minimum total number of the three

operations needed to obtain a chordless graph. For the special case of Chain

Editing, Drange et al. [10] showed an FPT in time 2O(
√
OPT logOPT ) + poly(n),

where poly(n) represents a polynomial function with respect to n. They also

showed the same result holds for a related problem called Threshold Editing.335

On the other side, Drange et al. [10] showed that Chain Editing and

Threshold Editing do not admit 2o(
√
OPT )poly(n) time algorithms assuming

the Exponential Time Hypothesis (ETH). For Chain Completion and Chor-

dal Completion, Bliznets et al. [6] excluded the possibility of 2O(
√
n/ logn) and

14



Chordal Chain

Editing
Unknown approximation,

FPT [9]

Unknown approximation,

FPT [9]

Addition 8OPT -approx [21], FPT [9]
8OPT -approx [21],

8d + 2-approx [11], FPT [9]

Total Addition
O(
√

∆ log4(n))-approx [1],

FPT [9]
2-approx [11], FPT [9]

Figure 3: This table shows existing results for the case that both sides are unconstrained,

which are all known to be NP-hard from the upper left block of Figure 2.

2O(OPT
1
4 / logc OPT )nO(1) time algorithms assuming ETH, where c is a constant.340

For Chordal Completion, Cao and Sandeep [8] showed that no algorithms in

time 2O(
√
OPT−δ)nO(1) exist for any positive δ, assuming ETH. They also exclu-

ded the possibility of a PTAS for Chordal Completion assuming P 6= NP . Wu

et al. [25] showed that no constant approximation is possible for Chordal Com-

pletion assuming the Small Set Expansion Conjecture. Figure 3 summarizes the345

known results for the aforementioned graph modification problems.

For the k-near problems, we show that the Unconstrained k-near Editing

problem is NP-hard by adapting the NP-hardness proof for Threshold Editing

from Drange et al. [9]. The remaining k-near problems have not been studied.

An abbreviated version of this paper appeared in the proceedings of the 11th350

International Conference and Workshops on Algorithms and Computation [16].

3. Polynomial Time Algorithms for k-near Orderings

We present our polynomial time algorithm for the Constrained k-near Addi-

tion and Editing problems, the Both k-near Addition and Editing problems, and

the Unconstrained k-near Addition problem. We also show the NP-hardness of355

the Unconstrained k-near Editing problem and provide a O(kn) additive ap-

proximation algorithm for it.

We assume correct orderings label the students from weakest (smallest label)

to strongest (largest label) and label the questions from easiest (smallest label)
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to hardest (largest label). We associate each student with its initial label given360

by the k-near ordering. For ease of reading, we boldface the definitions essential

to the analysis of our algorithm.

3.1. Constrained k-near

We will solve the Constrained k-near Editing and Addition problems in time

O(n324kk4k+2) by dynamic programs. First, we will solve the Constrained k-365

near Editing problem. Then we modify the algorithm to solve the Constrained

k-near Addition problem.

3.1.1. Constrained k-near Editing

Theorem 3.1 (Constrained k-near Editing). Constrained k-near Editing can

be solved in time O(n324kk4k+2).370

Proof. Assume that the students are given in k-near order 1, . . . , |S| and that

the questions are given in exact order 1 ≤ · · · ≤ |Q|. We construct a dynamic

program for Constrained k-near Editing. First, we introduce the subproblems

that we will consider. Define C(i, ui,Ui, vji) to be the smallest number of

edges incident to the weakest i positions that must be edited such that ui is in375

position i, Ui is the set of students in the weakest i− 1 positions, and vji is the

hardest question correctly answered by the i weakest students. Before deriving

the recurrence, we will define several sets that bound our search space within

polynomial size of n = |S|+ |Q|.

Search Space for Ui. Given position i and student ui, define Pi,ui to be the set380

of permutations on the elements in
[

max{1, i − k},min{|S|, i + k − 1}
]
\ {ui}.

Let Fi,ui :=
{
{π−1(1), . . . , π−1(k)} : π ∈ Pi,ui

, π(a) ∈ [a − k, a + k],∀a ∈[
max{1, i− k},min{|S|, i+ k − 1}

]
\ {ui}

}
. The set Pi,ui

includes all possible

permutations of the 2k students centered at position i, and the set Fi,ui
enforces

that no student moves more than k positions from its label. We claim that every385

element of Fi,ui is a candidate for Ui \
[
1,max{1, i − k − 1}

]
given that ui is

assigned to position i. To understand the search space for Ui given i and ui,

observe that for all i ≥ 2, Ui already must include all of
[
1,max{1, i − k − 1}

]
16



since any student initially at position ≤ i− k− 1 cannot move beyond position

i− 1 in a feasible solution. If i = 1, we have U1 = ∅. From now on, we assume390

i ≥ 2 and treat the base case i = 1 at the end. So the set Ui\
[
1,max{1, i−k−1}

]
will uniquely determine Ui. We know that Ui cannot include any students with

initial label [k + i, |S|] since students of labels ≥ k + i must be assigned to

positions i or later. So the only uncertainty remaining is which elements in[
max{1, i−k},min{|S|, i+k−1}

]
\{ui}make up the set Ui\

[
1,max{1, i−k−1}

]
.395

We may determine all possible candidates for Ui\
[
1,max{1, i−k−1}

]
by trying

all permutations of
[

max{1, i − k},min{|S|, i + k − 1}
]
\ {ui} that move each

student no more than k positions from its input label, which is exactly the set

Fi,ui
.

Feasible and Compatible Subproblems. Next, we define Si =400 {
(ui, Ui, vji) : ui ∈

[
max{1, i− k},min{|S|, i+ k}

]
, Ui \

[
1,max{1, i− k− 1}

]
∈

Fi,ui
, vji ∈ Q ∪ {0}

}
. The set Si represents the search space for all possible

vectors (ui, Ui, vji) given that ui is assigned to position i. Note that ui is requi-

red to be within k positions of i by the k-near constraint. So we encoded this

constraint into Si. To account for the possibility that the i weakest students405

answer no questions correctly, we allow vji to be in position 0, which we take

to mean that Ui ∪ {ui} gave wrong answers to all questions.

Now, we define Ri−1,ui,Ui,vji
:= {(ui−1, Ui−1, vji−1

) ∈ Si−1 : vji−1
≤

vji , Ui = {ui−1} ∪ Ui−1}. The set Ri−1,ui,Ui,vji
represents the search space

for smaller subproblems that are compatible with the subproblem (i, ui, Ui, vji).410

More precisely, given that ui is assigned to position i, Ui is the set of students as-

signed to the weakest i−1 positions, and vji is the hardest question correctly ans-

wered by Ui∪ui, the set of subproblems of the form (i−1, ui−1, Ui−1, vji−1
) which

do not contradict the aforementioned assumptions encoded by (i, ui, Ui, vji) are

exactly those whose (ui−1, Ui−1, vji−1) belongs to Ri−1,ui,Ui,vji
. We illustrate415

compatibility in Figure 4.

The Dynamic Program. Finally, we define cui,vji
to be the number of edge

edits incident to ui so that the neighborhood of ui becomes exactly {1, . . . , vji},
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Figure 4: Subproblem (i− 1, ui−1, Ui−1, vji−1 ) is compatible with subproblem (i, ui, Ui, vji )

if and only if vji−1 is no harder than vji and Ui = {ui−1} ∪ Ui−1. The cost of (i, ui, Ui, vji )

is the sum of the minimum cost among feasible compatible subproblems of the form (i −

1, ui−1, Ui−1, vji−1 ) and the number of edits incident to ui to make its neighborhood exactly

{1, . . . , vji}.

i.e., cui,vji
:= |NG(ui)4{1, . . . , vji}|. We know that cui,vji

is part of the cost

within C(i, ui, Ui, vji) since vji is the hardest question that Ui∪{ui} is assumed

to answer correctly and ui is a stronger student than those in Ui who are in the

positions before i. We obtain the following recurrence.

C(i, ui, Ui, vji) = min
(ui−1,Ui−1,vji−1

)∈Ri−1,ui,Ui,vji

{C(i−1, ui−1, Ui−1, vji−1
)}+cui,vji

The base cases are C(1, u1, U1, vj1) = |NG(u1)4{1, . . . , vj1}| if vj1 > 0, and

C(1, u1, U1, vj1) = |NG(u1)| if vj1 = 0 for all u1 ∈ [1, 1 + k], vj1 ∈ Q ∪ {0}.

By definition of our subproblems, the final solution we seek is

min(u|S|,U|S|,vj|S| )∈S|S|
C(|S|, u|S|, U|S|, vj|S|).420

Running Time. Now, we bound the run time of the dynamic program. Note

that before running the dynamic program, we build the sets Pi,ui , Fi,ui , Si,

Ri−1,ui,Ui,vji
to ensure that our solution obeys the k-near constraint and that

the smaller subproblem per recurrence is compatible with the bigger subproblem

it came from. Generating the set Pi,ui
takes (2k)! = O(22kk2k) time per (i, ui).425

Checking the k-near condition to obtain the set Fi,ui while building Pi,ui takes k2

time per (i, ui). So generating Si takes O(k ·22kk2kk2 · |Q|) time per i. Knowing

Si−1, generating Ri−1,ui,Ui,vji
takes O(|S|) time. Hence, generating all of the

sets is dominated by the time to build ∪i≤|S|Si, which is O(|S|k322kk2k|Q|) =
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O(n222kk2k+3).430

After generating the necessary sets, we solve the dynamic program.

Each subproblem (i, ui, Ui, vji) takes O(|Ri−1,ui,Ui,vji
)| time. So the total

time to solve the dynamic program is O(
∑
i∈S,(ui,Ui,vji )∈Si

|Ri−1,ui,Ui,vji
|) =

O(|S||Si||Si−1|) = O(n(k · 22kk2k · n)2) = O(n324kk4k+2).

3.1.2. Constrained k-near Addition435

We use the same framework as Constrained k-near Editing to solve the

Constrained k-near Addition. We change the definitions of the subproblem, the

relevant sets, and the costs appropriately to adapt to the Addition problem.

Theorem 3.2 (Constrained k-near Addition). Constrained k-near Addition can

be solved in time O(n324kk4k+2).440

Proof. First, redefine C(i, ui,Ui, vji) to be the smallest cost of adding edges

incident to the weakest i positions so that ui is in position i, Ui is the set of

students in the weakest i− 1 positions, and vji is the hardest question correctly

answered by the i weakest students.

The sets Pi,ui and Fi,ui will stay the same as before. We redefine Si :=445 {
(ui, Ui, vji) : ui ∈

[
max{1, i− k},min{|S|, i+ k}

]
, Ui \

[
1,max{1, i− k− 1}

]
∈

Fi,ui , vji ∈ Q ∪ {0}, vji ≥ maxNG({ui} ∪ Ui)
}

. Requiring that vji is at least

as hard as NG({ui} ∪Ui) ensures that the final solution will satisfy the interval

property with respect to the given question order. It was not needed in the

Editing problem because wherever vji landed, the edges that reach questions450

harder than vji were deleted. The definition of Ri−1,ui,Ui,vji
will stay the same

as before, but using the new definition of Si−1 from this section. Finally, the

cost cui,vji
will become the number of edge additions incident to ui so that the

neighborhood of ui becomes {1, . . . , vji}, i.e., cui,vji
:= |{1, . . . , vji} \NG(ui)|.

The recurrence relation from Constrained k-near Editing still applies here.455

However, the base cases become C(1, u1, U1, vj1) = |{1, . . . , vj1} \ NG(u1)| if

vj1 > 0, and C(1, u1, U1, vj1) = 0 if vj1 = 0.

The run time is still dominated by the dynamic program since the time to
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construct Si becomes only |Q| times larger (to enforce the additional constraint

that vji is hard enough). Hence the total time to solve this problem remains460

O(n324kk4k+2).

3.2. Unconstrained k-near

First, we solve the Unconstrained k-near Addition problem in time

O(n324kk4k). Second, we show that the Unconstrained k-near Editing problem465

is NP-hard.

Assume that the students are given in k-near order 1, . . . , |S|. The questions

are allowed to be ordered arbitrarily in the final solution.

3.2.1. Unconstrained k-near Addition

Theorem 3.3 (Unconstrained k-near Addition). Unconstrained k-near Addi-470

tion can be solved in time O(n324kk4k).

Proof. We introduce subproblems of the form (i, ui, Ui). Define C(i, ui,Ui) to

be the smallest number of edges incident to the weakest i positions that must be

added so that ui is in position i and Ui is the set of the i− 1 weakest students.

We use the same Pi,ui and Fi,ui as defined for Constrained k-near Editing475

to bound the search space for Ui given that ui is in position i. Define Si :={
(ui, Ui) : ui ∈

[
max{1, i−k},min{|S|, i+k}

]
, Ui\[1,max{1, i−k−1} ∈ Fi,ui

}
.

Next, define Ri−1,ui,Ui :=
{

(ui−1, Ui−1) ∈ Si−1 : Ui = {ui−1} ∪ Ui−1

}
.

The set Ri−1,ui,Ui ensures that the smaller subproblems have prefixes that are

compatible with those assigned in the bigger subproblems they came from. Com-480

patibility is illustrated in Figure 5.

Lastly, define cui,Ui to be the number of edge additions incident to ui so

that the neighborhood of ui becomes the smallest set of questions containing

NG(Ui ∪ {ui}), i.e., cui,Ui
:= |NG(Ui ∪ {ui}) \NG(ui)|.

Using the above definitions, we have the following recurrence:

C(i, ui, Ui) = min
(ui−1,Ui−1)∈Ri−1,ui,Ui

{C(i− 1, ui−1, Ui−1)}+ cui,Ui
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Figure 5: Subproblem (i− 1, ui−1, Ui−1) is compatible with subproblem (i, ui, Ui) if and only

if Ui = {ui−1} ∪ Ui−1. The cost of (i, ui, Ui) is sum of the minimum cost among feasible

compatible subproblems of the form (i− 1, ui−1, Ui−1) and the number of additions incident

to ui to make its neighborhood the smallest set of questions containing the existing neighbors

of Ui.

The base cases are C(1, u1, U1) = |NG(U1) \ NG(u1)| for all (u1, U1) ∈ S1,485

since u1 must add edges to the questions that the weaker students correctly

answered.

The final solution to Unconstrained k-near Addition is

min(u|S|,U|S|)∈S|S| C(|S|, u|S|, U|S|).

To bound the run time, note that generating Si takes O(n · 22kk2kk2) time.490

The dynamic program will dominate the run time again. In the dynamic

program, each subproblem (i, ui, Ui) takes O(|Ri−1,ui,Ui
|) time. So the total

time is O(
∑
i∈S,(ui,Ui)∈Si

|Ri−1,ui,Ui
|) = O(|S||Si||Si−1|) = O(n(n22kk2k)2) =

O(n324kk4k).

3.2.2. Unconstrained k-near Editing495

The Unconstrained k-near Editing problem is NP-hard even for k = 1. We

closely follow the proof of Drange et al. [9] for the NP-hardness of Threshold

Editing to show that Unconstrained k-near Editing is NP-hard. In Drange et

al.’s construction, they specified a partial order for which the cost of Threshold

Editing can only worsen if the output ordering deviates from it. We crucially500

use this property to prove NP-hardness for Unconstrained 1-near Editing.

Theorem 3.4 (Unconstrained k-near Editing). Unconstrained k-near Editing
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is NP-hard.

Proof. Let G = (S,Q,E) be a bipartite graph with initial student ordering

π. Consider the decision problem Π of determining whether there is a 1-near505

unconstrained editing of at most t edges for the instance (G, π). We reduce from

3-SAT to Π. Let Φ be an instance for 3-SAT with clauses C = {c1, . . . , cm}

and variables V = {v1, . . . , vn}. We construct the corresponding instance Π =

(GΦ, πΦ, tΦ) for 1-near unconstrained editing as follows. First we order the

variables in an arbitrary order and use this order to define π. For each variable510

vi, create six students sia, s
i
b, s

i
f , s

i
t, s

i
c, s

i
d. Next, we define a partial ordering P

that the initial order πΦ shall obey. Define P to be the partial order satisfying

sia > sib > sif , s
i
t > sic > sid for all i ∈ [n] and siα > sjβ for all i < j, α, β ∈

{a, b, c, d, f, t}. Define πΦ to be the linear ordering satisfying all relations of P

for the variables in the initial arbitrary order, and additionally sif > sit. We515

remark that the proof works regardless of whether we set sif > sit or sif < sit

in πΦ. We shall impose that optimal solutions satisfy all of the relations of P .

To do so, for every s > s′, we add tΦ + 1 new questions each with edges to

s and no edges to s′, and with edges to all r > s in πΦ. Then whenever an

editing solution switches the order of s and s′, it must edit at least tΦ +1 edges.520

After adding the necessary questions to ensure feasible solutions must preserve

the partial order P , we create a question qcl for each clause cl. If a variable

vi appears positively in cl, then add the edge qcls
i
t. If vi appears negatively in

cl, then add the edge qcls
i
f . If vi does not occur in cl, then add the edge qcls

i
c.

For all variables vi and clauses cl, add the edges qcls
i
b and qcls

i
d. Finally, define525

tΦ = |C|(3|V | − 1). Refer to Figure 6 for an illustration of the construction.

Now, we show that there is a satisfying assignment if and only if there is a 1-

near editing of at most tΦ edges. First, we prove the forward direction. Assume

there is a satisfying assignment f : V → {T, F}. Let cl be a clause. One of

the literals vi in cl is set to T under the assignment f . If vi occurs positively,530

then edit the neighborhood of qcl to be all students s such that s ≥ sit according

to P and impose sit > sif in the solution. If vi occurs negatively in qcl , then
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Figure 6: Each set of six vertices represents the students corresponding to a variable x, y, or

z. The bottom vertex represents a question corresponding to the clause cl = w ∨ x̄ ∨ y.

edit the neighborhood of qcl to be all students s such that s ≥ sif and keep the

initial order that sif > sit. In both cases, the neighborhood of qcl changed by

2 among the six students corresponding the variable vi and changed by 3 for535

the remaining groups of six students. So the number of edge edits incident to

each (clause) question is 3|V | − 1. Note that the neighborhoods of the extra

questions we added to impose P are already nested because each time a new

question was added, it received edges to all students who are stronger than a

particular student according to P . So only the questions that came from clauses540

potentially need to edit their neighborhoods to achieve nesting. Hence, the total

number of edge edits is |C|(3|V | − 1) = tΦ.

Second, we prove the backward direction. Assume there is an unconstrained

1-near editing of |C|(3|V |−1) edges to obtain a chain graph. Let cl be a clause.

For any variable vj not occurring in cl, the original edges that qcl has to the six545

students corresponding to vj are to sjb, s
j
c, s

j
d. If the cut-off point of the edited

neighborhood of qcl is among sja, s
j
b, s

j
f , s

j
t , s

j
c, s

j
d, then the edges incident to qcl

must change by at least three among those six, which means that qcl would have

at least 3|V | edges incident to it. If the cut-off point of the edited neighborhood

of qcl is among the six students corresponding to a variable vi that occurs in550

cl, then the edges incident to qcl must change by at least two (by switching the

order of sif and sit when needed) among those six students and at least three
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for the students corresponding to the remaining variables. Thus qcl has at least

3|V | − 1 edges edits incident to it for every cl. So the smallest number of edge

edits possible is at least |C|(3|V | − 1). By the assumption, GΦ has a feasible555

editing of at most |C|(3|V |−1) edges. Then each qcl must have exactly 3|V |−1

edits incident to it. So the cut-off point for the edited neighborhood of each

qcl must occur among the six students corresponding to a variable vi occurring

inside cl. If the occurring variable vi is positive, then the cut-off point must

have been at sit and required sit > sif since all other cut-offs incur at least three560

edits. Similarly, if vi is negative, then the cut-off point must have been at sif and

required sif > sit. All clauses must be consistent in their choice of the ordering

between sif and sit for all i ∈ [n] since the editing solution was feasible. Hence,

we obtain a satisfying assignment by setting each variable vi true if and only if

sit > sif .565

Next, we show a simple O(kn) additive approximation algorithm for Uncon-

strained k-near Editing.

Theorem 3.5 (Approximation for Unconstrained k-near Editing). Unconstrai-

ned k-near Editing has an O(kn) additive approximation algorithm.

Proof. Fix the student side to the initial ordering σ : S → [|S|] given for the k-570

near condition and solve the corresponding Constrained Unconstrained Editing

problem exactly. Denote by F the edge edits found from solving the Constrained

Unconstrained Editing problem. Let σ∗ be the ordering for S in an optimal

solution to the original k-near Unconstrained problem. Let H be the minimum

size edge edits corresponding to σ∗. It suffices to show that for each q ∈ Q,575

|NF (q)| − |NH(q)| ≤ 2k − 2, since this inequality would imply that |F | − |H| ≤

(2k − 2)|Q| ≤ 2kn.

For q ∈ Q, let p(q) be the position of the weakest student who answers q

correctly according to the ordering σ∗. By the k-near condition, any student

more than k − 1 positions after p(q) cannot be ordered before p(q) and vice580

versa. If p(q) remains the position of the weakest student who correctly answers

q according to the ordering σ, then the edge edits required would be the same
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as H, except for possibly those edges from q to students who are within k − 1

positions of p(q). For each q, F is determined by choosing the cut-off position

for the neighborhood of q that minimizes the number of edits needed. Then585

NF (q) should differ from NH(q) no more than the case where the cut-off point

for q stays the same position as p(q). So |NF (q)| − |NH(q)| ≤ 2(k − 1). Hence

|F | − |H| = O(kn).

3.3. Both k-near

We will solve the Both k-near Editing and Addition problems in time590

O(n328kk8k+4). We first show our solution for the Editing problem and then

adapt it to the Addition problem.

Assume that the students and questions are both given in k-near order with

student labels 1, . . . , |S|, and question labels 1, . . . , |Q|.

3.3.1. Both k-near Editing595

Theorem 3.6 (Both k-near Editing). Both k-near Editing can be solved in time

O(n328kk8k+4).

Proof. We consider subproblems of the form (i, ui, Ui, ji, vji , Vji). Define

C(i, ui,Ui, ji, vji , Vji) to be the smallest number of edges incident to the we-

akest i students that must be edited so that student ui is in position i, Ui is600

the set of the i − 1 weakest students, ji is the position of the hardest question

correctly answered by Ui ∪{ui}, vji is the question in position ji, and Vji is the

set of the ji − 1 easiest questions.

Feasible and Compatible Subproblems. Next, we define the search space

for (ui, Ui, ji, vji , Vji) given that ui is in position i. We use the same Pi,ui605

and Fi,ui defined in the proof for Constrained k-near Editing. Define Si :={
(ui, Ui, ji, vji , Vji) : ui ∈

[
max{1, i−k},min{|S|, i+k}

]
, Ui \

[
1,max{1, i−k−

1}
]
∈ Fi,ui

, vji ∈
[

max{1, ji−k},min{|Q|, ji+k}
]
, Vji \

[
1,max{1, ji−k−1}

]
∈

Fji,vji

}
. Here, we need to constrain both the student side and the question side

to make sure that all elements are k-near as opposed to only enforcing the610

k-nearness on the students in Constrained k-near Editing.
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1

Weakest

Strongest

|𝑆|

𝑖 − 𝑘 − 2

𝑖 + 𝑘 − 1

∈ 𝑈𝑖−1

∉ 𝑈𝑖−1

Permutable

except 𝑖 − 1

𝑢𝑖−1 → 𝑖 − 1

1

Weakest

Strongest

|𝑆|

𝑖 − 𝑘 − 1

𝑖 + 𝑘

∈ 𝑈𝑖

∉ 𝑈𝑖

Permutable

except 𝑖

𝑢𝑖 → 𝑖

𝑢𝑖−1

1

Easiest

Hardest

|𝑄|

𝑗𝑖−1 − 𝑘 − 1

𝑗𝑖−1 + 𝑘

∈ 𝑉𝑗𝑖−1

∉ 𝑉𝑗𝑖−1

Permutable

except 𝑗𝑖−1

𝑣𝑗𝑖−1 → 𝑗𝑖−1

1

Easiest

|𝑄|

𝑗𝑖 + 𝑘

∈ 𝑉𝑗𝑖

∉ 𝑉𝑗𝑖

Permutable

except 𝑗𝑖
𝑣𝑗𝑖 → 𝑗𝑖

𝑉𝑗𝑖−1

𝑗𝑖 − 𝑘 − 1

Compatible

Hardest

Figure 7: Subproblem (i − 1, ui−1, Ui−1, ji−1, vji−1 , Vji−1 ) is compatible with subproblem

(i, ui, Ui, ji, vji , Vji ) if and only if Ui = {ui} ∪ Ui−1, ji−1 represents a position no harder

than ji, Vji ∪ {vji} contains Vji−1 ∪ {vji−1}, and ji−1 strictly easier than ji implies that

Vji contains Vji−1 ∪ {vji−1}. The cost of (i, ui, Ui, ji, vji , Vji ) is the sum of the minimum

cost among feasible compatible states of the form (i − 1, ui−1, Ui−1, ji−1, vji−1 , Vji−1 ) and

the number of edits incident to ui that makes its neighborhood Vji ∪ {vji}.

To bound the search space for subproblems to be compatible with

the bigger subproblems they came from, we define Ri−1,ui,Ui,ji,vji
,Vji

:={
(ui−1, Ui−1, ji−1, vji−1 , Vji−1) ∈ Si−1 : Ui = Ui−1 ∪ {ui−1}, ji ≥ ji−1, Vji ∪

{vji} ⊇ Vji−1
∪ {vji−1

}, ji > ji−1 ⇒ Vji ⊇ Vji−1
∪ {vji−1

}
}

. The constraints in615

the set Ri−1,ui,Ui,ji,vji ,Vji
ensure that the prefixes of position i and position ji

in the smaller subproblem will be compatible with the bigger subproblem that

it came from. Furthermore, ji ≥ ji−1 ensures that stronger students correctly

answer all questions that weaker students correctly answered. We demonstrate

compatibility in Figure 7.620

The Dynamic Program. Finally, define cui,vji
,Vji

to be the number of edge

edits incident to ui so that the neighborhood of ui becomes exactly Vji ∪ {vji},

i.e., cui,vji ,Vji
:= |NG(ui)4Vji ∪ {vji}|.

Using the above definitions, we obtain the following recurrence.
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C(i, ui, Ui, ji, vji , Vji) =

min
(ui−1,Ui−1,ji−1,vji−1

,Vji−1
)∈Ri−1,ui,Ui,ji,vji

,Vji

{C(i− 1, ui−1, Ui−1, ji−1, vji−1
, Vji−1

)}

+ cui,vji ,Vji

625

The base cases are C(1, u1, U1, j1, vj1 , Vj1) = |NG(u1)4{vj1} ∪ Vj1 | for all

(u1, U1, j1, vj1 , Vj1) ∈ S1.

The final solution is min(u|S|,U|S|,j|S|,vj|S| ,Vj|S| )∈S|S|
C(|S|, u|S|, U|S|, j|S|, vj|S| , Vj|S|).

Running Time. First, observe that |Si| = O(k224kk4k|Q|), since there are

O(k) choices for ui and vi, O(22kk2k) choices for Ui and Vji , and |Q| choi-630

ces for ji. To build Si, we need to build Fi,ui
and Fji,vji . In Section 3, we

saw that each of the Fi,ui
takes O(k222kk2k) time to build. Then building

the set Si is upper bounded by O(k · 22kk2kk2 · |Q| · k · 22kk2kk2) per i, where

we are over-counting the time to generate all possible Ui and Vji by the time

it takes to build Fi,ui
and Fji,vji . Building the set Ri−1,ui,Ui,ji,vji ,Vji

while635

building Si will take O(|S| + |Q|) to check the conditions that restrict Si−1

to Ri−1,ui,Ui,ji,vji ,Vji
. Due to the size of Si, the construction of sets will still

be dominated by the time to solve the dynamic program. Specifically, each

subproblem (i, ui, Ui, ji, vji , Vji) takes O(|Ri−1,ui,Ui,ji,vji ,Vji
|) time. So the to-

tal time is O(
∑
i∈S,(ui,Ui,ji,vji ,Vji

)∈Si
|Ri−1,ui,Ui,ji,vji ,Vji

|) = O(|S||Si||Si−1|) =640

O(n(k2 · 24kk4kn)2) = O(n328kk8k+4).

3.3.2. Both k-near Addition

To solve the Addition version, we apply the method from the solution for

Both k-near Editing.

Theorem 3.7 (Both k-near Addition). Both k-near Addition can be solved in645

time O(n328kk8k+4).

Proof. We redefine C(i, ui,Ui, ji, vji , Vji) to be the smallest number of edges

incident to the weakest i students that must be added so that student ui is in
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position i, Ui is the set of the i − 1 weakest students, ji is the position of the

hardest question correctly answered by Ui ∪{ui}, vji is the question in position650

ji, and Vji is the set of the ji − 1 easiest questions.

We keep Pi,ui and Fi,ui the same as in the proof for Constrained k-near

Editing. Redefine Si :=
{

(ui, Ui, ji, vji , Vji) : ui ∈
[

max{1, i − k},min{|S|, i +

k}
]
, Ui\

[
1,max{1, i−k−1}

]
∈ Fi,ui

, vji ∈
[

max{1, ji−k},min{|Q|, ji+k}
]
, Vji\[

1,max{1, ji − k − 1}
]
∈ Fji,vji , Vji ∪ {vji} ⊇ NG({ui} ∪ Ui)

}
. The addition655

constraint Vji ∪ {vji} ⊇ NG({ui} ∪Ui) is added here to ensure that the interval

property induced by the current student ordering is satisfied every step. It was

not needed in section 3.3.1 because existing edges to questions outside Vji∪{vji}

could be deleted. The definition of Ri−1,ui,Ui,ji,vji
,Vji

remains the same as

section 3.3.1, but using the newly defined Si−1. Lastly, redefine cui,vji
,Vji

to660

be the number of edge additions incident to ui so that the neighborhood of ui

becomes exactly Vji ∪ {vji}, i.e., cui,vji ,Vji
:= |Vji ∪ {vji} \NG(ui)|.

The general recurrence relation of Section 3.3.1 stays the same. The base

cases change to C(1, u1, U1, j1, vj1 , Vj1) = |{vj1}∪Vj1\NG(u1)|, with the conven-

tion that j1 = 0 means Vj1 = ∅ and vj1 is omitted from the count |{vj1} ∪ Vj1 |.665

Although the time to construct Si is larger by a factor of |Q|, the total run

time is dominated by the dynamic program, which takes O(n328kk8k+4).

It is possible that the above running times for the five “easy” problems could

improve. Our dynamic programs are designed based on the intuitiveness of the

states and not necessarily optimized for time complexity.670

4. Conclusion

We proposed a new set of problems that arise naturally from ranking parti-

cipants and tasks in competitive settings and classified the complexity of each

problem. First, we introduced six k-near variants of the Chain Editing problem,

which capture a common scenario of having partial information about the final675

orderings from past rankings. Second, we provided polynomial time algorithms
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for five of the problems and showed NP-hardness and an O(kn) additive ap-

proximation for the remaining one.

Some open questions still remain for the NP-hard problems in Figure 2.

For Chain Editing when both sides are unconstrained, there are no known680

approximation algorithms. For the corresponding Chain Addition problem,

can a constant approximation can be achieved? For the Unconstrained k-near

Editing problem, can the O(kn) additive approximation be improved?
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