
Factorized Graph Representations for
Semi-Supervised Learning from Sparse Data
Krishna Kumar P.

IIT Madras
Paul Langton

Northeastern University
Wolfgang Gatterbauer

Northeastern University

ABSTRACT
Node classification is an important problem in graph data
management. It is commonly solved by various label propa-
gation methods that iteratively pass messages along edges,
starting from a few labeled seed nodes. For graphs with
arbitrary compatibilities between classes, these methods cru-
cially depend on knowing the compatibility matrix, which
must thus be provided by either domain experts or heuristics.
We instead suggest a principled and scalable method for di-
rectly estimating the compatibilities from a sparsely labeled
graph. This method, which we call distant compatibility es-
timation, works even on extremely sparsely labeled graphs
(e.g., 1 in 10,000 nodes is labeled) in a fraction of the time it
later takes to label the remaining nodes. Our approach first
creates multiple factorized graph representations (with size
independent of the graph) and then performs estimation on
these smaller graph sketches. We refer to algebraic amplifica-
tion as the underlying idea of leveraging algebraic properties
of an algorithm’s update equations to amplify sparse signals
in data.We show that our estimator is by orders of magnitude
faster than alternative approaches and that the end-to-end
classification accuracy is comparable to using gold standard
compatibilities. This makes it a cheap pre-processing step
for any existing label propagation method and removes the
current dependence on heuristics.

ACM Reference Format:
Krishna Kumar P., Paul Langton, and Wolfgang Gatterbauer. 2020.
Factorized Graph Representations for Semi-Supervised Learning
from Sparse Data. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3318464.3380577

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380577

class 1
(blue)

class 2
(orange)class 3

(green)

(a) Unobserved truth

0.6

0.20.2

0.6

0.2 0.2

(b) Class compatibilities H

class 1
(blue)

class 2
(orange)class 3

(green)

?
??

?

?
?

?

?
?

(c) Partially labeled graph

?

? ?

?

?
?

?

?
?

(d) What we actually see

Figure 1: (a, b): Graphs are formed based on relative compat-
ibilities between classes of nodes. (c, d): We have access to
only a few labels 𝑛ℓ ≪ 𝑛 and want to classify the remaining
nodeswithout knowing the compatibilities between classes.

1 INTRODUCTION
Node classification (or label prediction) [7] is an important
component of graph data management. In a broadly appli-
cable scenario, we are given a large graph with edges that
reflect affinities between their adjoining nodes and a small
fraction of labeled nodes. Most graph-based semi-supervised
learning (SSL) methods attempt to infer the labels of the
remaining nodes by assuming similarity of neighboring la-
bels. For example, people with similar political affiliations
are more likely to follow each other on social networks. This
problem is well-studied, and solutions are often variations
of random walks that are fast and sufficiently accurate.

However, at other times opposites attract or complement
each other (also called heterophily or disassortative mixing)
[28]. For example, predators might form a functional group
in a biological food web, not because they interact with
each other, but because they eat similar prey [42], groups
of proteins that serve a certain purpose often don’t interact
with each other but rather with complementary protein [9],
and in some social networks pairs of nodes are more likely
connected if they are from different classes (e.g., members
on the social network studied by [57] being more likely to
interact with the opposite gender than the same one).
In more complicated scenarios, such as online auction

fraud, fraudsters are more likely linked to accomplices, and
we have a mix of homophily and heterophily between multi-
ple classes of nodes [48].

https://doi.org/10.1145/3318464.3380577
https://doi.org/10.1145/3318464.3380577

?

? ?

?

?
?

?

?
?

1

Sparsely labeled graph

2

Derived statistics for
path lengths 1,2,…,

Estimated
compatibilities

m edges O(k 4)O(mk)

`

…
k ´k matrices` k ´k matrix`

Figure 2: Our approach for compatibility estimation pro-
ceeds in two steps: (1) an efficient graph summarization that
creates sketches in linear time of the number of edges𝑚 and
classes 𝑘 , see Section 4.6; and (2) an optimization step which
is independent of the size of the graph, see Section 4.4.

Example 1.1 (Email). Consider a corporate email network
with three different classes of users. Class 1, the marketing
people, often email class 2, the engineers (and v.v.), whereas
users of class 3, the C-Level Executives, tend to email amongst
themselves (Fig. 1b). Assume we are given the labels (classes)
of very few nodes (Fig. 1c). How can we infer the labels of
the remaining nodes?

For these scenarios, standard random walks do not work
as they cannot capture such arbitrary compatibilities. Early
works addressing this problem propose belief propagation
(BP) for labeling graphs, since BP can express arbitrary com-
patibilities between labels. However, the update equations
of BP are more complicated than standard label propaga-
tion algorithms. They have well-known convergence prob-
lems [44, Sec. 22], and are difficult to use in practice [53]. A
number of recent papers found ways to circumvent the con-
vergence problems of BP by linearizing the update equations
[13, 15, 17, 18, 29, 31], and thus transforming the update
equations of BP into an efficient matrix formulation. The
resulting updates are similar to random walks but propagate
messages “modulated” with relative class compatibilities.

A big challenge for deploying this family of algorithms is
knowing the appropriate compatibility matrixH, where each
entry 𝐻𝑖 𝑗 captures the relative affinity between neighboring
nodes of labels 𝑖 and 𝑗 . Finding appropriate compatibilities
was identified as a challenging open problem [38], and the
current state of the art is to have them given by domain
experts or by ad-hoc and rarely justified heuristics.

Our contribution.We propose an approach that does not
need any prior domain knowledge of compatibilities. Instead,
we estimate the compatibilities on the same graph for which
we later infer the labels of unlabeled nodes (Fig. 1d). We
achieve this by deriving an estimation method that (𝑖) can
handle extreme label scarcity, (𝑖𝑖) is orders of magnitude
faster than textbook estimation methods, and (𝑖𝑖𝑖) results in
labeling accuracy that is nearly indistinguishable from the
actual gold standard (GS) compatibilities. In other words, we
suggest an end-to-end solution for a difficult within-network
classification, where compatibilities are not given to us.

0.01% 0.1% 1% 10% 100%
Label Sparsity (f)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

n=10k, d=25, h=3

GS
LCE
MCE
DCE
DCE r
Holdout

0.51

0.51

(a) Estimation & propagation

102 103 104 105 106 107 108

Number of edges (m)

10−2

10−1

100

101

102

103

T
im

e
[s

ec
]

d=5, h=8

Propagation
Baseline
Our method

316
1125

11

28x
8077x

(b) Scalability

Figure 3: (a): Our methods infer labels with similar accuracy
as if we were given the gold standard compatibilities (GS):
e.g., labeling accuracy of 0.51 in a graph with 10k nodes and
only 8 labeled nodes with our best method distance compat-
ibility estimation with restarts (DCEr) in red as compared to
the same accuracy with GS. (b): The additional step of esti-
mating compatibilities is fast: DCEr learns the compatibili-
ties on a graph with 16.4m edges in 11 sec, which is 28 times
faster than node labeling (316 sec) and 3-4 orders of magni-
tude faster than a baseline holdout method.

Problem 1.2 (Automatic Node Classification). Given
an undirected graph𝐺 (𝑉 , 𝐸) with a set of labeled nodes𝑉ℓ ⊂ 𝑉
from 𝑘 classes and unknown compatibilities between classes.
Classify the remaining nodes, 𝑣 ∈ 𝑉 \𝑉𝑙 .

Summary of approach. We develop a novel, consistent,
and scalable graph summarization that allows us to split com-
patibility estimation into two steps (Fig. 2): (1) First calculate
the number of paths of various lengths ℓ between nodes for
all pairs of classes. While the number of paths is exponential
in the path’s length, we develop efficient factorization and
sparse linear algebra methods that calculate them in time
linear of the graph size and path length.1 (2) Second use a
combination of these compact graph statistics to estimate
H. We derive an explicit formula for the gradient of the loss
function that allows us to find the global optimum quickly.
Importantly, this second optimization step takes time in-
dependent of the graph size (!). In other words, we reduce
compatibility estimation over a sparsely labeled graph into
an optimization problem over a set of small factorized graph
representations with an explicit gradient. Our approach has
only one, relatively insensitive, hyperparameter.

Our approach is orders of magnitude faster than common
parameter estimation methods that rely on log-likelihood
estimations and variants of expectation maximization. For
example, recent work [42] develops methods that can learn
compatibilities on graphs with hundreds of nodes in minutes
time. In contrast, we learn compatibilities in graphs with
16.4 million edges in 11 sec using an off-the-shelf optimizer

1Example 4.6 will illustrate evaluating 1014 such paths in less than 0.1 sec.

and running on a single CPU (see Fig. 3b). In a graph with
10𝑘 nodes and only 8 labeled nodes, we estimate H such that
the subsequent labeling has equivalent accuracy (0.51) to
a labeling using the actual compatibilities (GS in Fig. 3a).
We are not aware of any reasonably fast approach that can
learn the compatibilities from the sparsely labeled graph. All
recent work in the area uses simple heuristics to specify the
compatibilities: e.g., [15, 17, 18, 29].

Outline. We start by giving a precise meaning to com-
patibility matrices by showing that prior label propagation
methods based on linearized belief propagation essentially
propagate frequency distributions of labels between neigh-
bors (Section 3.1) and deriving the corresponding energy
minimization framework (Section 3.2). Based on this for-
mulation, we derive two convex optimization methods for
parameter estimation (Section 4): linear compatibility esti-
mation (LCE) and myopic compatibility estimation (MCE).
We then develop a novel consistent estimator which counts
ℓ-distance non-backtracking paths: distant compatibility esti-
mation (DCE). Its objective function is not convex anymore,
but well-behaved enough so we can find the global optimum
in practice with a few repeated restarts, an approach we
call DCE with restarts (DCEr). Section 5 gives an extensive
comparative study on synthetic and real-world data. Proofs
and more experimental results are available in our extended
version on arXiv [30].

2 FORMAL SETUP AND RELATEDWORK
We first define essential concepts and review related work
on semi-supervised node labeling. We denote vectors (x) and
matrices (X) in bold. We use row-wise (X𝑖:), column-wise
(X:𝑗), and element-wise (𝑋𝑖 𝑗) matrix indexing, e.g., X𝑖: is the
𝑖-th row vector of X (and thus bold), whereas 𝑋𝑖 𝑗 is a single
number (and thus not bold).

2.1 Semi-Supervised Learning (SSL)
Traditional graph-based Semi-Supervised Learning (SSL) pre-
dict the labels of unlabeled nodes under the assumption of
homophily or smoothness. Intuitively, a label distribution is
“smooth” if a label “x” on a node makes the same label on a
neighboring node more likely, i.e. nodes of the same class
tend to link to each other. The various methods differ mainly
in their definitions of “smoothness” between classes of neigh-
boring nodes [6, 35, 56, 63, 65, 67].2
Common to all approaches, we are given a graph 𝐺 =

(𝑉 , 𝐸) with 𝑛 = |𝑉 |,𝑚 = |𝐸 |, and real edge weights given
by 𝑤 : 𝐸 → R. The weight 𝑤 (𝑒) of an edge 𝑒 indicates the

2Notice a possible naming ambiguity: “learning” in SSL stands for classifying
unlabeled nodes (usually assuming homophily). In our setup, we first need
to “learn” (or estimate) the compatibility parameters, before we can classify
the remaining nodes with a variant of label propagation.

similarity of the incident nodes, and a missing edge corre-
sponds to zero similarity. These weights are captured in the
symmetric weighted adjacency matrix W ∈ R𝑛×𝑛 defined by
𝑊𝑖 𝑗 ≜ 𝑤 (𝑒) if 𝑒 = (𝑖, 𝑗) ∈ 𝐸, and 0 otherwise. Each node is
a member of exactly one of 𝑘 classes which have increased
edge incidence between members of the same class. Given
a set of labeled nodes 𝑉𝐿 ⊂ 𝑉 with labels in [𝑘], predict the
labels of the remaining unlabeled nodes 𝑉 \𝑉𝐿 .

Most binary SSL algorithms [60, 64, 66] specify the existing
labels by a vector x = [𝑥1, . . . , 𝑥𝑛]T with 𝑥𝑖 ∈ 𝐿 = {+1,−1}
for 𝑖 ≤ 𝑛𝐿 and 𝑥𝑖 = 0 for 𝑛𝐿 + 1 ≤ 𝑖 ≤ 𝑛. Then a real-
valued “labeling function” assigns a value 𝑓𝑖 with 1 ≤ 𝑖 ≤ 𝑛

to each data point 𝑖 . The final classification is performed as
sign(𝑓𝑖) for all unlabeled nodes. This binary approach can
be extended to multi-class classification [60] by assigning
a vector to each node. Each entry represents the belief that
a node is in the corresponding class. Each of the classes is
propagated separately and, at convergence, compared at each
node with a “one-versus-all” approach [10]. SSL methods
differ in how they compute 𝑓𝑖 for each node 𝑖 and commonly
justify their formalism from a “regularization framework”;
i.e., by motivating a different energy function and proving
that the derived labeling function 𝑓 is the solution to the
objective of minimizing the energy function.

Contrast to our work. The labeling problem we are in-
terested in this work is a generalization of standard SSL.
In contrast to the commonly used smoothness assumption
(i.e. labels of the same class tend to connect more often),
we are interested in the more general scenario of arbitrary
compatibilities between classes.

2.2 Belief Propagation (BP)
Belief Propagation (BP) [53] is a widely used method for
reasoning in networked data. In contrast to typical semi-
supervised label propagation, BP handles the case of arbitrary
compatibilities. By using the symbol ⊙ for the component-
wise multiplication and writing m𝑗𝑖 for the 𝑘-dimensional
“message” that node 𝑗 sends to node 𝑖 , the BP update equa-
tions [44, 61] can be written as:

f𝑖 ← 𝑍−1
𝑖 x𝑖 ⊙

⊙
𝑗 ∈𝑁 (𝑖)

m𝑗𝑖 m𝑖 𝑗 ← H
(
x𝑖 ⊙

⊙
𝑣∈𝑁 (𝑖)\𝑗

m𝑣𝑖

)
Here, 𝑍𝑖 is a normalizer that makes the elements of f𝑖 sum to
1, and each entry 𝐻𝑐𝑒 in H is a proportional “compatibility”
that indicates the relative influence of a node of class 𝑐 on its
neighbor of class 𝑒 . Thus, an outgoingmessage from a node is
computed by multiplying all incoming messages (except the
one sent previously by the recipient) and then multiplying
the outgoing message by the edge potential H.
Unlike other SSL methods, BP has no simple linear alge-

bra formulation and has well-known convergence problems.
Despite extensive research on the convergence of BP [14, 41]

exact criteria for convergence are not known [44, Sec. 22]
and practical use of BP is non-trivial [53].

Contrast to ourwork. Parameter estimation in graphical
models quickly becomes intractable for even moderately-
sized datasets [42]. We transform the original problem into a
linear algebra formulation that allows us to leverage existing
highly optimized tools and that can learn compatibilities
often faster than the time needed to label the graph.

2.3 Linearized Belief Propagation
Recent work [18, 29] suggested to “linearize” BP and showed
that the original update equations of BP can be reasonably
approximated by linearized equations

f̃𝑖 ← x̃𝑖 +
1
𝑘
·
∑

𝑗 ∈𝑁 (𝑖)
m̃𝑗𝑖 m̃𝑖 𝑗 ← H̃

(
f̃𝑖 −

1
𝑘
m̃𝑗𝑖

EC

)
by “centering” the belief vectors x, f and the potential matrix
around 1

𝑘
. If a vector x is centered around 𝑐 , then the residual

vector around 𝑐 is defined as x̃ = [𝑥1 − 𝑐, 𝑥2 − 𝑐, . . .] and
centered around 0. This centering allowed the authors to
rewrite BP in terms of the residuals. The “echo cancellation”
(EC) term is a result of the condition “𝑣 ∈ 𝑁 (𝑖) \ 𝑗” in the
original BP equations.
While the EC term has a strong theoretical justification

for BP and appears to have been kept for the correspondence
between BP and LinBP, in our extensive simulations, we
have not identified any parameter regime where including
the EC term for propagation consistently gives better results.
It rather slows down evaluation and complicates determin-
ing the convergence threshold (the top eigenvalue becomes
negative slightly above the convergence threshold). We will
thus explicitly ignore the EC term in the remainder of this
paper. The update equations of LinBP then become:

F̃← X̃ +WF̃H̃ (LinBP) (1)

The advantage of LinBP over standard BP is that the lin-
earized formulation allows provable convergence guaran-
tees. The process was shown to converge iff the following
condition holds on the spectral radii3 𝜌 of H̃ and W:

𝜌
(
H̃
)
< 1/𝜌

(
W) (2)

Follow-upwork [17] generalizes LinBP to themost general
case of arbitrary pairwise Markov networks which include
heterogeneous graphs with fixed number of node and edge
types. Independently, ZooBP [15] follows a similar motiva-
tion, yet restricts itself to the mathematically less challenging
special case of constant row-sum symmetric potentials.

Contrast to our work. Our work focuses on homoge-
neous graphs and makes a complementary contribution to
3The spectral radius of a matrix is the largest absolute value among its
eigenvalues.

that of label propagation: that of learning compatibilities
from a sparsely labeled graph in a fraction of the time it takes
to propagate the labels (Section 4). This avoids the reliance
on domain experts or heuristics and results in an end-to-end
estimation and propagation method. An earlier version of
the ideas in our paper was made available on arXiv as [16].

2.4 Iterative Classification Methods
RandomwalkswithRestarts (RWR).Randomwalk-based
methodsmake the assumption that the graph is homophilous;
i.e., that instances belonging to the same class tend to link to
each other or have higher edge weight between them [34]. In
general, given a graph𝐺 = (𝑉 , 𝐸), random walk algorithms
return as output a ranking vector f that results from iterating
following equation until convergence:

f ← 𝛼u + 𝛼Wcolf (3)

Here, u is a normalized teleportation vector with |u| = |𝑉 |
and | |u| |1 = 1, and Wcol is column-normalized. Notice that
above Eq. (3) can be interpreted as the probability of a random
walk on 𝐺 arriving at node 𝑖 , with teleportation probability
𝛼 at every step to a node with distribution u [34]. Variants
of this formulation are used by PageRank [46], Personalized
PageRank [11, 24], Topic-sensitive PageRank [23], Random
Walks with Restarts [47], and MultiRankWalk [34] which
runs 𝑘 random walks in parallel (one for each class 𝑐).
To compare it with our setting, MultiRankWalk [34] and

other forms of random walks can be stated as special cases of
the more general formulation: (1) For each class 𝑐 ∈ [𝑘]: (a)
set u𝑖 ← 1 if node 𝑖 is labeled 𝑐 , (b) normalize u s.t. | |u| |1 = 1.
(2) Let U be the 𝑛×𝑘 matrix with column 𝑖 equal u𝑖 . (3) Then
iterate until convergence:

F← 𝛼U + 𝛼WcolFI𝑘

(4) After convergence, label each node 𝑖 with the class 𝑐 with
maximum value: 𝑐 = arg max𝑗 𝐹𝑖 𝑗 .
Other Iterative Classification Methods. Goldberg et

al. [20] consider a concept of similarity and dissimilarity
between nodes. This method only applies to classification
tasks with 2 labels and cannot generalize to arbitrary com-
patibilities. Bhagat et al. [8] look at commonalities across the
direct neighbors of nodes in order to classify them. The paper
calls this method leveraging “co-citation regularity” which
is indeed equally expressive as heterophily. The experiments
in that paper require at least 2% labeled data (Figure 6e in
[8]), which is similar to the regimes up to which MCE works.
Similarly, Peel [50] suggests an interesting method that skips
compatibility matrices by propagating information across
nodes with common neighbors. The method was tested on
networks with 10% labeled nodes and it will be interesting
to investigate its performance in the sparse label regime.

2.5 Recent Neural Network Approaches
Several recent papers propose neural network (NN) architec-
tures for node labeling (e.g., [21, 27, 43]). In contrast to our
work (and all other work discussed in this section), those NN-
based approaches require additional features from the nodes.
For example, in the case of Cora, [27] also has access to node
content (i.e. which words co-occur in a paper). Having access
to the actual text of a paper allows better classification than
the network structure alone. As a result, [27] can learn and
use a large number of parameters in their trained NN.

Contrast to ourwork.We classify the nodes based on the
graph structure alone, without access to additional features.
The result is that while [27] achieves an accuracy of 81.5% for
5.2% labeled nodes in Cora (see Section 5.1 and Section 6.1
of [27]), we still achieve 66% accuracy based on the network
alone and only 21 estimated parameters.

2.6 Non-Backtracking Paths (NB)
Section 4.5 derives estimators for the powers of H by count-
ing labels over all “non-backtracking” (NB) paths in a par-
tially labeled graph. We prove our estimator to be consistent
and thus with negligible bias for increasing 𝑛. Prior work
already points to the advantages of NB paths for various dif-
ferent graph-related problems, such as graph sampling [32]),
calculating eigenvector centrality [36], increasing the de-
tectability threshold for community detection [31], improv-
ing estimation of graphlet statistics [12], or measuring the
distance between graphs [58]. To make this work, all these
papers replace the 𝑛 × 𝑛 adjacency matrix with a 2𝑚 × 2𝑚
“Hashimoto matrix” [22] which represents the link structure
of a graph in an augmented state space with 2𝑚 states (one
state for each directed pair of nodes) and in the order of
𝑂 (𝑚(𝑑 − 1)) non-zero entries, and then perform random
walks. The only work we know that uses NB paths with-
out Hashimoto is [2], which calculates the mixing rate of a
NB random walk on a regular expanders (thus graphs with
identical degree across all nodes). That work does not gen-
eralize to graphs with varying degree distribution and does
not allow an efficient path summarization.

Contrast to our work. Our approach does not perform
random walks, does not require an augmented state space
(see Proposition 4.3), and still allows an efficient path summa-
rization (see Proposition 4.5). To the best of our knowledge,
ours is the first proposal to (𝑖) estimate compatibilities from
NB paths and (𝑖𝑖) propose an efficient calculation.

2.7 Distant Supervision
The idea of distant supervision is to adapt existing ground
truth data from a related yet different task for providing
additional lower quality labels (also called weak labels) to

sparsely labeled data [25, 39, 51]. The methods are thus also
often referred to as weak supervision.

Contrast to our work. In our setting, we are given no
other outside ground truth data nor heuristic rules to label
more data. Instead, we leverage certain algebraic properties
of an algorithm’s update equations to amplify sparse signals
in the available data. We thus refer to the more general idea
of our approach as algebraic amplification.

3 PROPERTIES OF LABEL PROPAGATION
This section makes novel observations about linearized ver-
sions of BP that help us later find efficient ways to learn the
compatibility matrix H from sparsely labeled graphs.

3.1 Propagating Frequency Distributions
Our first observation is that centering of prior beliefs X and
compatibility matrix H in LinBP Eq. (1) is not necessary and
that the final labels are identical whether we use X̃ or X, and
H̃ or H. We state this result in a slightly more general form:
Let F = LinBP(W,X,H, 𝜖, 𝑟) stand for the label distribution
after iterating the LinBP update equations 𝑟 times, starting
from X and using scaling factor 𝜖 . Let l = label(F) stand
for the operation of assigning each node the class with the
maximum belief: 𝑙𝑖 = arg max𝑗 𝐹𝑖 𝑗 . Then:

Theorem 3.1 (Centering in LinBP is unnecessary).
Given constants 𝑐1 and 𝑐2 s.t. H2 = H1 + 𝑐1 and X2 =

X1 + 𝑐2.4 Then, ∀W, 𝜖, 𝑟 : label
(
LinBP(W,X2,H2, 𝜖, 𝑟)

)
=

label
(
LinBP(W,X1,H1, 𝜖, 𝑟)

)
.

Modulating beliefs of a node with H instead of H̃ allows a
natural interpretation of label propagation as “propagating
frequency distributions” and thus imposing an expected fre-
quency distribution on the labels of neighbors of a node. This
observation gives us an intuitive interpretation of our later
derived approaches for learning H from observed frequency
distributions (Section 4.3). For the rest of this paper, we will
thus replace Eq. (1) with the “uncentered” version:

F← X +WFH (4)

A consequence is that compatibility propagation works
identically whether the compatibility matrix H is centered
or kept as doubly-stochastic. In other words, if the relative
frequencies by which different node classes connect to each
other is known, then this matrix can be used without center-
ing for compatibility propagation and will lead to identical
results and thus node labels.

4We use here “broadcasting notation:” adding a number to a vector or matrix
is a short notation for adding the number to each entry in the vector.

3.2 Labeling as Energy Minimization
Our next goal is to formulate the solution to the update equa-
tions of LinBP as the solution to an optimization problem; i.e.,
as an energy minimization framework. While LinBP was de-
rived from probabilistic principles (as approximation of the
update equations of belief propagation [18]), it is currently
not known whether there is a simple objective function that
a solution minimizes. Knowledge of such an objective is help-
ful as it allows principled extensions to the core algorithm.
We will next give the objective function for LinBP and will
use it later in Section 4 to solve the problem of parameter
learning; i.e., estimating the compatibility matrix from a par-
tially labeled graph.

Proposition 3.2 (LinBP objective function). The en-
ergy function minimized by the LinBP update equations Eq. (1)
is given by:

𝐸 (F) = | |F − X −WFH| |2 (5)

4 COMPATIBILITY ESTIMATION
In this section we develop a scalable algorithm to learn com-
patibilities from partially labeled graph. We proceed step-
by-step, starting from a baseline until we finally arrive at
our suggested consistent and scalable method called “Distant
Compatibility Estimation with restarts” (DCEr).
The compatibility matrix we wish to estimate is a 𝑘 × 𝑘-

dimensional doubly stochastic matrix H. Because any sym-
metric doubly-stochastic matrix has 𝑘∗ ≜ 𝑘 (𝑘−1)

2 degrees of
freedom, we parameterize all 𝑘2 entries as a function of 𝑘∗ ap-
propriately chosen parameters. In all following approaches,
we parameterize H as a function of the 𝑘∗ entries of 𝐻𝑖 𝑗 with
𝑖 ≤ 𝑗, 𝑗 ≠ 𝑘 . We can calculate the remaining matrix entries
from symmetry and stochasticity conditions as follows:

𝐻𝑖 𝑗 =


𝐻 𝑗𝑖 , if 𝑖 < 𝑗, 𝑗 ≠ 𝑘

1 −∑𝑘−1
ℓ=1 𝐻𝑖ℓ , if 𝑖 ≠ 𝑘, 𝑗 = 𝑘

1 −∑𝑘−1
ℓ=1 𝐻ℓ 𝑗 , if 𝑖 = 𝑘, 𝑗 ≠ 𝑘

2 − 𝑘 +∑ℓ,𝑟<𝑘 𝐻ℓ𝑟 , if 𝑖 = 𝑗 = 𝑘

(6)

For example, for 𝑘 = 3, H can be reconstructed from a
𝑘∗ = 3-dimensional vector h = [𝐻11, 𝐻21, 𝐻22]T as follows:

H(h) =
[

𝐻11 𝐻12 1−𝐻11−𝐻12
𝐻21 𝐻22 1−𝐻21−𝐻22

1−𝐻11−𝐻21 1−𝐻12−𝐻22 𝐻11+2𝐻21+𝐻22−1

]
More generally, let h ∈ R𝑘∗ and define H as function of

the 𝑘∗ ≜ 𝑘 (𝑘−1)
2 entries of h as follows:

H =


ℎ1
ℎ2 ℎ3
ℎ4 ℎ5 ℎ6

.

.

.

.

.

.

.

.

.
.
.
.

. .
ℎ... ℎ... ℎ... ... ℎ𝑘∗ .
.


The remaining matrix entries can be calculated from Eq. (6).

4.1 Baseline: Holdout Method
Our first approach for estimating H is a variant of a standard
textbook method [28, 40, 62] and serves as baseline against
which we compare all later approaches: we split the labeled
data into two sets and learn the compatibilities that fit best
when propagating labels from one set to the other.

Formally, let Q be a partition of the available labels into
a Seed and a Holdout set. For a fixed partition Q and given
compatibility matrix H, the “holdout method” runs label
propagation Eq. (1) with Seed as seed labels and evaluates
accuracy over Holdout. Denote AccQ (H) the resulting accu-
racy. Its goal is then to find the matrix H that maximizes the
accuracy. In other words, the energy function that holdout
minimizes is the negative accuracy:

𝐸 (H) = −AccQ (H)

The optimization itself is then a search over the parameter
space given by the 𝑘∗ free parameters of H:

Ĥ = arg min
H

𝐸 (H), s.t. Eq. (6)

The result may depend on the choice of partition Q. We
could thus use 𝑏 different partitions Q𝑖 , 𝑖 ∈ [𝑏]: For a fixed
H we run label propagation 𝑏 times, each starting from a
different Seed𝑖 , and each evaluated over its corresponding
test set Holdout𝑖 . The energy function to minimize is then
the negative compound accuracy:

𝐸 (H) = −
∑
𝑖

AccQ𝑖 (H) (Holdout) (7)

We suggest this method as reasonable baseline as it mim-
ics parameter estimation methods in probabilistic graphical
models that optimize over a parameter space by using mul-
tiple executions of inference as a subroutine [28]. Similarly,
our holdout method maximizes the accuracy by using in-
ference as a “black box” subroutine. The downside of the
holdout method is that each step in this iterative algorithm
performs inference over the whole graph which makes pa-
rameter estimation considerably more expensive than inference
(label propagation). The number of splits 𝑏 has an obvious
trade-off: higher𝑏 smoothens the energy function and avoids
overfitting to one partition, but increases runtime.
In the following sections, we introduce novel path sum-

marizations that avoid running estimation over the whole
graph. Instead we use a few concise graph summaries of size
𝑂 (𝑘2), independent of the graph size. In other words, the ex-
pensive iterative estimation steps can now be performed on
a reduced size summary of the partially labeled graph. This
conceptually simple idea allows us to perform estimation
faster than inference (recall Fig. 3b).

4.2 Linear Compatibility Estimation (LCE)
We obtain our first novel approach from energyminimization
objective of LinBP in Proposition 3.2:

𝐸 (F) = | |F − X −WFH| |2

Note that for an unlabeled node 𝑖 , the final label distribu-
tion is the weighted average of its neighbors: F𝑖: = (WFH)𝑖:.
To see this, consider a single row for a node 𝑖:

| |
(
F − X −WFH

)
𝑖: | |

2

If 𝑖 is unlabeled then its corresponding entries in X𝑖: are 0,
and the minimization objective is equivalent to

| |
(
F −WFH

)
𝑖: | |

2

which leads to F𝑖: = (WFH)𝑖: for an unlabeled node. Next
notice that if we knew F and ignored the few explicit labels,
then H could be learned from minimizing

𝐸 (H) = | |F −WFH| |2

In our case, we only have few labels in the form of X instead
of F. Our first novel proposal for learning the compatibility
matrixH is to thus use the available labelsX and to minimize
the following energy function:

𝐸 (H) = | |X −WXH| |2 (LCE) (8)

Notice that Eq. (8) defines a convex optimization problem.
Thus any standard optimizer can solve it in considerably
faster time than the Holdout method and it is no longer nec-
essary to use inference as subroutine. We call this approach
“linear compatibility estimation” as the optimization criterion
stems directly from the optimization objective of linearized
belief propagation.

4.3 Myopic Compatibility Estimation: MCE
We next introduce a powerful yet simple idea that allows
our next approaches to truly scale: we first (1) summarize
the partially labeled graph into a small summary, and then
(2) use this summary to perform the optimization. This idea
was motivated by the observation that Eq. (8) requires an
iterative gradient descent algorithm and has to multiply large
adjacency matrix W in each iteration. We try to derive an
approach that can “factor out” this calculation into small but
sufficient factorized graph representation, which can then be
repeatedly used during optimization.

Our first method is called myopic compatibility estimation
(MCE). It is “myopic” in the sense that it tries to summarize
the relative frequencies of classes between observed neighbors.
We describe below the three variants to transform this sum-
mary into a symmetric, doubly-stochastic matrix.
Consider a partially labeled 𝑛 × 𝑘-matrix X with 𝑋𝑖𝑐 =

1. If node 𝑖 has label 𝑐 (recall that unlabeled nodes have a
corresponding null row vector in X), then the 𝑛 × 𝑘-matrix
N ≜ WX has entries 𝑁𝑖𝑐 representing the number of labeled

neighbors of node 𝑖 with label 𝑐 . Furthermore, the 𝑘 × 𝑘-
matrix M ≜ XTN = XTWX has entries𝑀𝑐𝑑 representing the
number of nodes with label 𝑐 that are neighbors of nodes
with label 𝑑 . This symmetric matrix represents the observed
number of labels among labeled nodes. Intuitively, we are
trying to find a compatibility matrix which is “similar” to M.
We normalizeM into an observed neighbor statistics matrix
P̂ and then find the closest doubly-stochastic matrix H:
We consider three variants for normalizing M. The first

one appears most natural (creating a stochastic matrix rep-
resenting label frequency distributions between neighbors,
then finding the closest doubly-stochastic matrix). We con-
ceived of two other approaches, just to see if the choice of
normalization has an impact on the final labeling accuracy.
(1) Make M row-stochastic by dividing each row by its

sum. The vector of row-sums can be expressed in ma-
trix notation asM1. We thus define the first variant of
neighbor statistics matrix as:

P̂ = Mrow ≜ diag(M1)−1M (Variant 1) (9)

Note, we use Mrow as short notation for row-
normalizing the matrixM. For each class 𝑐 , the entry
𝑃𝑐𝑒 gives the relative frequency of a node being con-
nected to class 𝑒 While the matrix is row-stochastic, it
is not yet doubly-stochastic.

(2) The second variant uses the symmetric normalization
method LGC [64] from Section 2:

P̂ = diag(M1)− 1
2 M diag(M1)− 1

2 (Variant 2) (10)

The resulting P̂ is symmetric but not stochastic.
(3) The third variant scaledM s.t. the average matrix entry

is 1
𝑘
. This divisor is the sum of all entries divided by 𝑘

(in vector notation written as 1TM1) :

P̂ = 𝑘 (1TM1)−1M (Variant 3) (11)

This scaled matrix is neither symmetric nor stochastic.
We then find the “closest” symmetric, doubly stochastic

matrix H (i.e., it fulfills the 𝑘∗ ≜ 𝑘 (𝑘−1)
2 conditions implied

by symmetry H = HT and stochasticity H1 = 1). We use
the Frobenius norm because of its favorable computational
properties and thus minimize the following function:

𝐸 (H) = | |H − P̂| |2 (MCE) (12)

Notice that all three normalization variants above have
an alternative, simple justification: on a fully labeled graph,
each variant will learn the same compatibility matrix; i.e., the
matrix that captures the relative label frequencies between
neighbors in a graph. On a graph with sampled nodes, how-
ever, M will not necessarily be constant row-sum anymore.
The three normalizations and the subsequent optimization
are alternative approaches for finding a “smoothened” ma-
trix H that is close to the observations. Our experiments

have shown that the “most natural” normalization variant 1
consistently performs best among the three methods. Unless
otherwise stated, we thus imply using variant 1.

Notice that MCE and all following approaches estimate H
without performing label propagation; and only because we
avoid propagation, our method turns out to be faster than
label propagation on large graphs and moderate 𝑘 .

4.4 Distant Compatibility Estimation: DCE
While MCE addresses the scalability issue, it still requires a
sufficient number of neighbors that are both labeled. For very
small fractions 𝑓 of labeled nodes, this may not be enough.
Our next method, “distant compatibility estimation” (DCE),
takes into account longer distances between labeled nodes.

In a graph with𝑚 edges and a small fraction 𝑓 of labeled
nodes, the number of neighbors that are both labeled can be
quite small (∼𝑚𝑓 2). Yet the number of “distance-2-neighbors”
(i.e., nodes which are connected via a path of length 2) is
higher in proportion to the average node degree 𝑑 (∼ 𝑑𝑚𝑓 2).
Similarly for distance-ℓ-neighbors (∼ 𝑑ℓ−1𝑚𝑓 2). As informa-
tion travels via a path of length ℓ , it gets modulated ℓ times;
i.e., via a power of the compatibility matrix: Hℓ .5 We propose
to use powers of the matrix H to be estimated by comparing
them against an “observed length-ℓ statistics matrix.”

Powers of the adjacency matrixWℓ with entries𝑊 ℓ
𝑖 𝑗 count

the number of paths of length ℓ between any nodes 𝑖 and
𝑗 . Extending the ideas in Section 4.3, let N(ℓ) ≜ WℓX and
M(ℓ) ≜ XTN(ℓ) = XTWℓX. Then entries 𝑀 (ℓ)𝑐𝑒 represent the
number of labeled nodes of class 𝑒 that are connected to
nodes of class 𝑐 by an ℓ-distance path. Normalize this matrix
(in any of the previous 3 variants) to get the observed length-
ℓ statistics matrix P̂(ℓ) . Calculate these length-ℓ statistics for
several path lengths ℓ , and then find the compatibility matrix
that best fits these multiple statistics.

Concretely, minimize a “distance-smoothed” energy

𝐸 (H) =
ℓmax∑
ℓ=1

𝑤ℓ | |Hℓ − P̂(ℓ) | |2 (DCE) (13)

where ℓmax is the maximal distance considered, and the
weights𝑤ℓ balance having more (but weaker) data points for
bigger ℓ the more reliable (but sparser) signal from smaller ℓ .
To parameterize the weight vector w, we use a “scaling

factor” 𝜆 defined by 𝑤ℓ+1 = 𝜆𝑤ℓ . For example, a distance-3
weight vector is then [1, 𝜆, 𝜆2]T. The intuition is that in a
typical graph, the fraction of number of paths of length ℓ to
the number of paths of length ℓ −1 is largely independent of ℓ
(but proportional to the average degree). Thus, 𝜆 determines
the relative weight of paths of one more hop. As consequence
our framework has only one single hyperparameter 𝜆.
5Notice that this is strictly correct only in graphs with balanced labels. Our
experiments verify the quality of estimation also on unbalanced graphs.

`=1 `=2

i j u

Figure 4: Illustration for non-backtracking paths

In our experiments (Section 5), we initialize the optimiza-
tion with a 𝑘∗-dimensional vector with all entries equal to 1

𝑘

and discuss our choice of ℓmax and 𝜆.

4.5 Non-Backtracking Paths (NB)
In our previous approach of learning from more distant
neighbors, we made a slight but consistent mistake. We il-
lustrate this mistake with Fig. 4. Consider the blue node
𝑖 which has one orange neighbor 𝑗 , which has two neigh-
bors, one of which is green node 𝑢. Then the blue node 𝑖
has one distance-2 neighbor 𝑢 that is green. However, our
previous approach will consider all length-2 paths, one of
which leads back to node 𝑖 . Thus, the row entry for node
𝑖 in N is N(2)

𝑖: = [1, 0, 1] (assuming blue, orange, and green
represent classes 1, 2, and 3, respectively). In other words,
M(2) will consistently overestimate the diagonal entries.
To address this issue, we consider only non-backtracking

paths (NB) in the powers of the adjacency matrix. A NB
path on an undirected graph 𝐺 is a path which does not
traverse the same edge twice in a row. In other words, a path
(𝑢1, 𝑢2, . . . , 𝑢ℓ+1) of length ℓ is non-backtracking iff ∀𝑗 ≤
ℓ − 1 : 𝑢 𝑗 ≠ 𝑢 𝑗+2. In our notation, we replaceWℓ withW(ℓ)NB.
For example, W(2)NB = W2 − D (a node 𝑖 with degree 𝑑𝑖 has
𝐷𝑖𝑖 = 𝑑𝑖 as diagonal entry in D). A more general calculation
of W(ℓ)NB for any length ℓ is presented in Section 4.6. We now
calculate new graph statistics P̂(ℓ)NB from M(ℓ)NB ≜ XTW(ℓ)NBX

instead of M(ℓ) , and replace P̂(ℓ) with P̂
(ℓ)
NB in Eq. (13):

𝐸 (H) =
ℓmax∑
ℓ=1

𝑤ℓ | |Hℓ − P̂(ℓ)NB | |2 (DCE NB) (14)

We next show that–assuming a label-balanced graph–this
change gives us a consistent estimator with bias in the order of
O(1/𝑚), in contrast to the prior bias in the order of O(1/𝑑):

Theorem 4.1 (Consistency of statistics P̂(ℓ)NB). Under
mild assumptions for the degree distributions, P̂

(ℓ)
NB is a consis-

tent estimator for Hℓ , whereas P̂
(ℓ)

is not:

lim
𝑛→∞

P̂
(ℓ)
NB = Hℓ whereas, lim

𝑛→∞
P̂
(ℓ)

≠ Hℓ

Example 4.2 (Non-backtracking paths). Consider the com-
patibility matrix H =

[0.2 0.6 0.2
0.6 0.2 0.2
0.2 0.2 0.6

]
. Then H2 =

[0.44 0.28 0.28
0.28 0.44 0.28
0.28 0.28 0.44

]
,

and the maximum entry (permuting between first and
second position in the first row) follows the series

1 2 3 4 5
Path length (`)

0.35

0.40

0.45

0.50

0.55

0.60

0.65
n=10k, d=20, h=3, f=0.1

H`

P̂(`)

P̂
(`)
NB

(a) Example 4.2

1 2 3 4 5 6 7 8
Path length (`)

10−3

10−2

10−1

100

101

102

T
im

e
[s

ec
] W`

P̂
(`)
NB

n=10k, d=20, h=3, f=0.1

(b) Example 4.6

Figure 5: (a): Example 4.2: P̂(ℓ)NB uses non-backtracking paths

only and is a consistent estimator, in contrast to P̂(ℓ) . (b) Ex-
ample 4.6: Calculating Wℓ for increasing ℓ is costly, while
our factorized calculation of P̂(ℓ)NB avoids evaluating Wℓ ex-
plicitly and thus scales to arbitrary path lengths ℓ .

0.6, 0.44, 0.376, 0.3504, . . . for increasing ℓ (shown as continu-
ous green lineHℓ in Fig. 5a). We create synthetic graphs with
𝑛 = 10k nodes, average node degree 𝑑 = 20, uniform degree
distribution, and compatibility matrix H. We remove the la-
bels from 1 − 𝑓 = 90% nodes, then calculate the top entry in
both P̂

(ℓ) and P̂
(ℓ)
NB. The two bars in Fig. 5a show the mean

and standard deviation of the corresponding matrix entries,
illustrating that the approach based on non-backtracking
paths leads to an unbiased estimator (height of orange bars
are identical to the red circles), in contrast to the full paths
(blue bars are higher than the red circles). □

4.6 Scalable, Factorized Path Summation
Calculating longer NB paths is more involved. For example:
W(3)NB = W3 − (DW +WD −W). However, we can calculate
them recursively as follows:

Proposition 4.3 (Non-backtracking paths). LetW(ℓ)NB
be the matrix with 𝑊

(ℓ)
NB 𝑖 𝑗

being the number of non-

backtracking paths of length ℓ from node 𝑖 to 𝑗 . Then W(ℓ)NB for
ℓ ≥ 3 can be calculated via following recurrence relation:

W(ℓ)NB = WW(ℓ−1)
NB − (D − I)W(ℓ−2)

NB (15)

with starting values W(1)NB = W and W(2)NB = W2 − D. □

Calculating P̂
(ℓ)
NB requires multiple matrix multiplications.

While matrix multiplication is associative, the order in which
we perform the multiplications considerably affects the time
to evaluate a product. A straight-forward evaluation strategy
quickly becomes infeasible for increasing ℓ .
We illustrate with M(3) : a default strategy is to first cal-

culate W(3) = W(WW) and then M(3) = XT (W(3)X). The
problem is that the intermediate result W(ℓ) becomes dense.
Concretely, ifW is sparse with𝑚 entries and average node

degree 𝑑 , thenW2 has in the order of 𝑑 more entries (∼ 𝑑𝑚),
andWℓ exponential more entries (∼ 𝑑ℓ−1𝑚). Thus intuitively,
we like to choose the evaluation order so that intermediate
results are as sparse as possible.6 The ideal way to calculate
the expressions is to keep 𝑛 × 𝑘 intermediate matrices as in
M(3) = XT (W(W(WX)).
Our solution is thus to re-structure the calculation in a

way that minimizes the result sizes of intermediate results
and caches results used across estimators with different ℓ .
The reason of the scalability of our approach is that we can
calculate all ℓmax graph summaries very efficiently.

Algorithm 4.4 (Factorized path summation). Itera-
tively calculate the graph summaries P̂

(ℓ)
NB, for ℓ ∈ [ℓmax] as

follows:
(1) Starting from N(1)NB = WX and N(2)NB = WN(1)NB − DX,

iteratively calculate N(ℓ)NB = WN(ℓ−1)
NB − (D − I)N(ℓ−2)

NB .
(2) Calculate M(ℓ)NB = XTN(ℓ)NB.

(3) Calculate P̂
(ℓ)
NB from normalizingM(ℓ) with Eq. (9).

Proposition 4.5 (Factorized path summation). Algo-
rithm 4.4 calculates all P̂

(ℓ)
NB for ℓ ∈ [ℓmax] in O(𝑚𝑘ℓmax).

Example 4.6 (Factorized path summation). Using the setup
from Example 4.2, Fig. 5b shows the times for evaluating
Wℓ against our more efficient evaluation strategy for P̂(ℓ)NB.
Notice the three orders of magnitude speed-up for ℓ = 5.
Also notice that P̂(8)NB summarizes statistics over more than
1014 paths in a graph with 100k edges in less than 0.02 sec.

4.7 Gradient-based Optimization
Our objective to find a symmetric, doubly stochastic matrix
that minimizes Eq. (14) can be represented as

Ĥ = argmin
H

𝐸 (H) s.t. H1 = 1,HT = H (16)

For ℓmax > 1, the function is non-convex and unlikely to have
a closed-form solution. We thus minimize the function with
gradient descent. However, we would require to calculate
the gradient with regard to the free parameters.

Proposition 4.7 (Gradient). The gradient for Eq. (16) and
energy function Eq. (14) with regard to the free parameters

6This is well known in linear algebra and is analogous to query optimization
in relational algebra: The two query plans 𝜋𝑦

(
𝑅 (𝑥) Z 𝑆 (𝑥, 𝑦)

)
and 𝑅 (𝑥) Z(

𝜋𝑦𝑆 (𝑥, 𝑦)
)
return the same values, but the latter can be considerably faster.

Similarly, the “evaluation plans” (WW)X and W(WX) are algebraically
equivalent, but the latter can be considerably faster for 𝑛 ≫ 𝑘 . Efficient
factorized representations are also the focus of factorized databases [45].

𝐻𝑖 𝑗 , 𝑖 ≤ 𝑗, 𝑗 ≠ 𝑘 is the dot product SG calculated from

G = 2
ℓmax∑
ℓ=1

𝑤ℓ

(
ℓH2ℓ−1 −

ℓ−1∑
𝑟=0

H𝑟 Ĥ
(ℓ)
Hℓ−𝑟−1

)
S𝑖 𝑗 =

{
J𝑖 𝑗 + J𝑗𝑖− J𝑖𝑘− J𝑘 𝑗− J𝑗𝑘− J𝑘𝑖+ 2J𝑘𝑘 , if 𝑖 < 𝑗, 𝑗 ≠ 𝑘

J𝑖 𝑗− J𝑖𝑘− J𝑘 𝑗 + J𝑘𝑘 , if 𝑖 = 𝑗, 𝑗 ≠ 𝑘

where J𝑖 𝑗 is single-entry matrix with 1 at (𝑖, 𝑗) and 0 elsewhere.

4.8 DCE with Restarts (DCEr)
Whereas MCE solves a convex optimization problem, the ob-
jective function for DCE becomes non-convex for a sparsely
labeled graph (i.e. 𝑓 ≪ 1). Given a number of classes 𝑘 , DCE
optimizes over𝑘∗ = Θ(𝑘2) free parameters. Since the parame-
ter space have several local minimas, the optimization should
be restarted from multiple points in the 𝑘∗-dimensional pa-
rameter space, in order to find the global minimum. Thus
DCEr optimizes the same energy function Eq. (13) as DCE,
but with multiple restarts from different initial values.

Here our two-step approach of separating the estimation
into two steps (recall Fig. 2) becomes an asset: Because the
optimizations run on small sketches of the graph that are
independent of the graph size, starting multiple optimiza-
tions is actually cheap. For small 𝑘 , restarting from within
each of the 2𝑘∗ possible hyper-quadrants of parameter space
(each free parameter being 1

𝑘
± 𝛿 for some small 𝛿 < 1

𝑘2) is
negligible as compared to the graph summarization: This is
so as for increasing𝑚 (large graphs), calculation of the graph
statistics dominates the cost for optimization (see Fig. 6k,
where DCE and DCEr are effectively equal for large graphs).
For higher 𝑘 , our extensive experiments show that in prac-
tice Eq. (13) has nice enough properties that just restarting
from a limited number of restarts usually leads to a compati-
bility matrix that achieves the optimal labeling accuracy (see
Fig. 6h and discussion in Section 5.2).

4.9 Complexity Analysis
Proposition 4.5 shows that our factorized approach for calcu-
lating all ℓmax graph estimators P̂(ℓ)NB is O(𝑚𝑘ℓmax) and thus is
linear in the size of the graph (number of edges). The second
step of estimating the compatibility matrix H is then inde-
pendent of the graph size and dependents only on 𝑘 and the
number of restarts 𝑟 . The number of free parameters in the
optimization is 𝑘∗ = O(𝑘2), and calculating the Hessian is
quadratic in this number. Thus, the second step is O(𝑘4𝑟).

5 EXPERIMENTS
We designed the experiments to answer two key questions:
(1) How accurate is our approach in predicting the remaining
nodes (and how sensitive is it with respect to our single
hyperparameter)? (2) How fast is it and how does it scale?

We use two types of datasets: we first perform carefully
controlled experiments on synthetic datasets that allow us to
change various graph parameters. We then use 8 real-world
datasets with high levels of class imbalance, various mixes
between homophily and heterophily, and extreme skews of
compatibilities. There, we verify that our methods also work
well on a variety of datasets which we did not generate.

Using both datasets, we show that: (1) Our method “Dis-
tant Compatibility Estimation with restarts” (DCEr) is largely
insensitive to the choice of its hyperparameter and consis-
tently competes with the labeling accuracy of using the “true”
compatibilities (gold standard). (2) DCEr is faster than label
propagation with LinBP [18] for large graphs, which makes
it a simple and cheap pre-processing step (and thereby again
rendering heuristics and domain experts obsolete).

Synthetic graph generator. We first use a completely
controlled simulation environment. This setup allows us to
systematically change parameters of the planted compatibil-
ity matrix and see the effect on the accuracy of the techniques
as result of such changes. We can thus make observations
from many repeated experiments that would not be be feasi-
ble otherwise. Our synthetic graph generator is a variant of
the widely studied stochastic block-model described in [52],
but with two crucial generalizations: (1) we actively control
the degree distributions in the resulting graph (which allows
us to plant more realistic power-law degree distributions);
and (2) we “plant” exact graph properties instead of fixing a
property only in expectation. In other words, our generator
creates a desired degree distribution and compatibility ma-
trix during graph generation, which allows us to control all
important parameters. The input to the generator is a tuple of
parameters (𝑛,𝑚,α,H, dist) where 𝑛 is the number of nodes,
𝑚 the number of edges, α the node label distribution with
𝛼 (𝑖) being the fraction of nodes of class 𝑖 (𝑖 ∈ [𝑘]), H any
symmetric doubly-stochastic compatibility matrix, and “dist”
a family of degree distributions. Notice that α allows us to
simulate arbitrary node imbalances. In some of our synthetic
experiments, we parameterize the compatibility matrix by a
value ℎ representing the ratio between min and max entries.
Thus parameter ℎ models the “skew” of the potential: For
𝑘 = 3, H =

[1 ℎ 1
ℎ 1 1
1 1 ℎ

]
/(2 + ℎ). For example, H =

[0.1 0.8 0.1
0.8 0.1 0.1
0.1 0.1 0.8

]
for ℎ = 8, and H =

[0.2 0.6 0.2
0.6 0.2 0.2
0.2 0.2 0.6

]
for ℎ = 3 (see Example 4.2).

We create graphs with 𝑛 nodes and, assuming class balance,
assign equal fractions of nodes to one of the 𝑘 classes, e.g.
α = [13 ,

1
3 ,

1
3]. We also vary the average degree of the graph

𝑑 = 2𝑚
𝑛
and perform experiments assuming power law (co-

efficient 0.3) distributions.
Quality assessment. We randomly sample a stratified

fraction 𝑓 of nodes as seed labels (i.e. classes are sampled
in proportion to their frequencies) and evaluate end-to-end

accuracy as the fraction of the remaining nodes that receive
correct labels. Random sampling of seed nodes mimic real-
world setting, like social networks, where people who choose
to disclose their data, like gender label or political affiliation,
are randomly scattered. Notice that decreasing 𝑓 represents
increasing label sparsity. To account for class imbalance, we
macro-average the accuracy, i.e. we take the mean of the
partial accuracies for each class.

Computational setup and code.We implement our al-
gorithms in Python using optimized libraries for sparse ma-
trix operations (NumPy [59] and Scipy [26]). Timing data
was taken on a 2.5 Ghz Intel Core i5 with 16G of main
memory and a 1TB SSD hard drive. Holdout method uses
scipy.optimize with the Nelder-Mead Simplex algorithm [1],
which is specifically suited for discrete non-contiguous func-
tions.7 All other estimation methods use Sequential Least
SQuares Programming (SLSQP). The spectral radius of a
matrix is calculated with an approximate method from the
PyAMG library [5] that implements a technique described
in [4]. Our code (including the data generator) is inspired
by Scikit-learn [49] and will be made publicly available to
encourage reproducible research.8

5.1 Accuracy of Compatibility Estimation
We show accuracy of parameter estimation by DCEr and
compare it with “holdout” baseline and linear, myopic and
simple distant variants. We consider propagation using ‘true
compatibility’ matrix as our gold standard (GS).

Result 1 (Parameter choice of DCEr) Normalization
variant 1 and longer paths ℓmax = 5 are optimal for DCE.
Choosing the hyperparameter 𝜆 = 10 performs robustly for
a wide range of average degrees 𝑑 and label sparsity 𝑓 .

Figure 6a shows DCE used with our three normalization
variants and different maximal path lengths ℓmax. The verti-
cal axis shows the L2-norm between estimation and GS for
H. Variant 3 generally performs worse, and variant 2 gen-
erally has higher variance. Our explanation is that finding
the L2-norm closest symmetric doubly-stochastic matrix to
a stochastic one is a well-behaved optimization problem.
Figure 6b shows DCEr for various values of 𝜆 and ℓmax.

Notice that DCEr for ℓmax =1 is identical to MCE, and that
DCEr works better for longer paths ℓmax = 5, as those can
overcome sparsity of seed labels. This observation holds over
a wide range of parameters and becomes stronger for small
𝑓 . Also notice that even numbers ℓmax=2 do not work as well
as the objective has multiple minima with identical value.

7We tried alternative optimizers, such as the Broyden-Fletcher-Goldfarb-
Shanno (‘BFGS’) algorithm [3]. Nelder-Mead performed best for the baseline
holdout method due to its gradient-free nature.
8https://github.com/northeastern-datalab/factorized-graphs/

Figures 6c and 6d show the optimal choices of hyperpa-
rameter 𝜆 (giving the smallest L2 norm from GS) for a wide
range of 𝑑 and 𝑓 . Each red dot shows an optimal choice of 𝜆.
Each gray dot shows a choice with L2-norm that is within
10% of the optimal choice. The red line shows a moving trend
line of averaged choices. We see that choosing 𝜆 = 10 is a
general robust choice for good estimation, unless we have
enough labels (high 𝑓): then we don’t need longer paths and
can best just learn from immediate neighbors (small 𝜆).

Figure 6e shows the advantage of using ℓmax=5, 𝜆=10 and
random restarts for estimating H as compared to just MCE
or DCE: for small 𝑓 , DCE may get trapped in local optima
(see Section 4.8); randomly restarting the optimization a few
times overcomes this issue.

Result 2 (Accuracy performance of DCEr) Label accu-
racy with DCEr is within ±0.01 of GS performance and is
quasi indistinguishable from GS.

Figure 6f show results from first estimating H on a par-
tially labeled graph and then labeling the remaining nodes
with LinBP. We see that more accurate estimation of H also
translates into more accurate labeling, which provides strong
evidence that state-of-the-art approaches that use simple
heuristics are not optimal. GS runs LinBP with gold stan-
dard parameters and is the best LinBP can do. The holdout
method was varied with 𝑏 ∈ {1, 2, 4, 8} in Fig. 6f and 𝑏 = 1
else. Increasing the number of splits moderately increases the
accuracy for the holdout method, but comes at proportionate
cost in time. DCEr is faster and more accurate throughout all
parameters. In all plots, estimating with DCEr gives identical
or similar labeling accuracy as knowing the GS. DCE is as
good as DCEr for 𝑓 > 1% for 10k and 𝑓 > 0.1% for 100k
nodes. MCE and LCE both rely on labeled neighbors and
have similar accuracy.
Figures 6b and 6j show that neighbor frequency distri-

butions alone do not work with sparse labels, and that our
ℓ-distance trick successfully overcomes its shortcomings.

Result 3 (Restarts required for DCEr) With 𝑟 = 10
restarts, DCEr obtains the performance levels of GS.

Figure 6h shows propagation accuracy of DCEr for differ-
ent number of restarts 𝑟 compared against the global min-
imum baseline, which is calculated by initializing DCE op-
timization with GS. Notice, the optimal baseline is the best
any estimation based method can perform. Averaged over 35
runs, Fig. 6h shows that DCEr approaches the global minima
with just 10 restarts; we thus use 𝑟 = 10 in our experiments.

Figure 6i serves as sanity check and demonstrates what
happens if we use standard random walks (here the har-
monic functions method [66]) to label nodes in graphs with

https://github.com/northeastern-datalab/factorized-graphs/

1 2 3 4 5
Max path length (`max)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

L
2

no
rm

λ = 10

n=10k, d=25, h=8, f=0.05

Variants
1
2
3

(a) L2 norm DCE for 3 variants

10−1 100 101 102 103

Scaling factor (λ)

10−1

100

L
2

no
rm

n=10k, d=25, h=8, f=0.001
`max = 1
`max = 2
`max = 3
`max = 4
`max = 5

(b) L2 norm DCEr 𝜆 and ℓmax

0.01 0.03 0.1 0.3 1
f

0.3

1

10

100

λ

n=10k, h=8, d=25

Opt(λ|d)
≤1.1 Opt

(c) Robustness with 𝑓

3 5 10 30 100
d

0.3

1

10

100

λ

n=10k, h=8, f=0.1

Opt(λ|d)
≤1.1 Opt

(d) Robustness with 𝑑

0.001 0.01 0.1 1
Label Sparsity (f)

10−3

10−2

10−1

100

L
2

no
rm

n=10k, h=8, d=25

MCE
DCE
DCEr

(e) L2 norm MCE, DCE, DCEr

10−2 10−1 1 10 102 103

Time Median (sec)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

n=10k, d=25, h=3, f=0.003

[0.04]
2568x

[0.12]

2568x

[0.05]

2568x

[0.15]

2568x

181.7

2568x2568x

Holdout
GS
MCE
LCE
DCE
DCEr

(f) Accuracy vs. time

2 3 4 5 6 7 8
Number of Classes (k)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

n=10k, d=25, h=3, f=0.01

GS
LCE
MCE
DCE
DCEr
Holdout
Random

(g) Estimation & propagation

3 4 5 6 7
Number of Classes (k)

0.70

0.80

0.90

1.00

R
el

at
iv

e
A

cc
ur

ac
y

n=10k, d=15, h=8, f=0.09

r =10
r =5
r =4
r =3
r =2
Global Minima

(h) Restarts for DCEr

0.1% 1% 10% 100%
Label Sparsity (f)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

n=10k, d=15, h=3

GS
DCEr
Homophily

(i) Homophily Comparison

0.01% 0.1% 1% 10% 100%
Label Sparsity (f)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

n=10k, d=25, h=3 α =[1
6,

1
3,

1
2]

GS
LCE
MCE
DCE
DCE r
Holdout

(j) Estimation & propagation

102 103 104 105 106 107 108

Number of edges (m)

10−3

10−2

10−1

100

101

102

103

T
im

e
[s

ec
]

d=5, h=8

1sec/100k edges
MCE
LCE
DCE
DCEr
Holdout
prop

2

95

1111

1125
316

(k) Scalability with𝑚

2 3 4 5 6 7
Number of Classes (k)

0.01

0.1

1

10

100

500

T
im

e
[s

ec
]

n=10k, d=25, h=3, f=0.01

LCE
MCE
DCE
DCEr
Holdout

(l) Scalability with 𝑘

Figure 6: Experimental results for (a)-(j) accuracy (Section 5.1), and scalability of our methods (Section 5.2)

arbitrary compatibilities: Baselines with a homophily as-
sumption fall behind tremendously on graphs that do not
follow assortative mixing.

Result 4 (Robustness of DCEr) Performance of DCEr
remains consistently above other baselines for skewed label
distributions and large number of classes, whereas other SSL
methods deteriorate for 𝑘 > 3.

To illustrate the approaches for class imbalance and more
general H, we include an experiment with α = [16 ,

1
3 ,

1
2] and

H =

[0.2 0.6 0.2
0.6 0.1 0.3
0.2 0.3 0.5

]
. Figure 6j (contrast to Fig. 3a) shows that

DCEr works robustly better than alternatives, can deal with
label imbalance, and can learn the more general H.

Figure 6g compares accuracy against random labeling for
fixed𝑛,𝑚,ℎ, 𝑓 , and increasing 𝑘 . DCEr restarts up to 10 times

and works robustly better than alternatives. Recall that the
number of compatibilities to learn is O(𝑘2).

5.2 Scalability of Compatibility Estimation
Figure 6k shows the scalability of our combined methods.
On our largest graph with 6.6m nodes and 16.4m edges, prop-
agation takes 316 sec for 10 iterations, estimation with LCE
95 sec, DCE or DCEr 11 sec, and MCE 2 sec.

Result 5 (Scalabilitywith increasing graph size) DCEr
scales linearly in𝑚 and experimentally is more than 3 orders
of magnitude faster than Holdout method.

Our estimation method DCEr is more than 25 times faster
than inference (used by Holdout as a subroutine) and thus
comes “for free” as𝑚 scales. Also notice that DCE and DCEr
need the same time for large graphs because of our two-step

0.1% 1% 10% 100%
Label Sparsity (f)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Cora: n = 2k, d = 7.8

GT
LCE
MCE
DCE
DCE r

(a) Cora

0.1% 1% 10% 100%
Label Sparsity (f)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Citeseer: n = 3k, d = 5.6

GT
LCE
MCE
DCE
DCE r

(b) Citeseer

0.1% 1% 10% 100%
Label Sparsity (f)

0.0

0.1

A
cc

ur
ac

y

Hep-th: n = 27k, d = 5.6

GT
LCE
MCE
DCE
DCE r

(c) Hep-Th

0.1% 1% 10% 100%
Label Sparsity (f)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Movielens: n = 26k, d = 25.1

GS
LCE
MCE
DCE1
DCE10
DCEr1
DCEr10
Holdout

(d) MovieLens

0.1% 1% 10% 100%
Label Sparsity (f)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Enron: n = 46k, d = 23.4

GS
LCE
MCE
DCE
DCE r

(e) Enron

0.1% 1% 10% 100%
Label Sparsity (f)

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Prop37: n = 62k, d = 34.8

GS
LCE
MCE
DCE
DCEr
Holdout

(f) Prop-37

0.01% 0.1% 1% 10% 100%
Label Sparsity (f)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Pokec-Gender: n = 1632k, d = 54.6

GT
LCE
MCE
DCE
DCE r

(g) Pokec-Gender

0.1% 1% 10% 100%
Label Sparsity (f)

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Flickr: n = 2007k, d = 18.1

GT
LCE
MCE
DCE
DCE r

(h) Flickr

Cora, k=7

(i)
Citeseer, k=6

(j)
Hep-Th, k=11

(k)
MovieLens, k=3

(l)
Enron, k=4

(m)
Prop-37, k=3

(n)
Pokec-Gender, k=2

(o)
Flickr, k=3

(p)

Figure 7: Experiments over 8 real-world datasets (Section 5.3): (a)-(h): Accuracy of end-to-end estimation and propagation.
(i)-(p): Illustration of class imbalance and heterophily in their gold standard compatibility matrices (darker colors represent
higher number of edges): the first 3 show homophily, the latter 5 arbitrary heterophily.

calculation: the time needed to calculate the graph statistics
P̂
(ℓ)
NB, ℓ ∈ [5] becomes dominant; each of the 8 optimizations

of Eq. (13) then takes less than 0.1 sec for any size of the graph.
The Holdout method for𝑏 = 1 takes 1125 sec for a graph with
256k edges. Thus the extrapolated difference in scalability
between DCEr and Holdout is 3-4 orders of magnitude if
𝑏 = 1. Figure 6f shows that increasing the number of splits
𝑏 for the holdout method can slightly increase accuracy at
even higher runtime cost.
Figure 6l uses a setup identical to Figure 6g and shows

that our methods also scale nicely with respect to number
of classes 𝑘 , as long as the graph is large and thus the graph
summarization take most time. Here, DCEr uses 10 restarts.

5.3 Performance on Real-World Datasets
We next evaluate our approach over 8 real-world graphs,
described in Figure 8, that have a variety of complexities : (𝑖)

Dataset 𝑛 𝑚 𝑑 𝑘 DCEr
Cora [53] 2,708 10,858 8.0 7 3.33
Citeseer [53] 3,312 9,428 5.7 6 1.13
Hep-Th [19] 27,770 352,807 25.4 11 10.61
MovieLens [54] 26,850 336,742 25.0 3 0.07
Enron [33] 46,463 613,838 26.4 4 0.20
Prop-37 [55] 62,383 2,167,809 69.4 3 0.09
Pokec-Gender [57] 1,632,803 30,622,564 37.5 2 5.12
Flickr [37] 2,007,369 18,147,504 18.1 3 2.39

Figure 8: Real-world dataset statistics, Section 5.3. The last
column shows runtime of DCEr (in sec).

Graphs are formed by very different processes, (𝑖𝑖) class dis-
tributions are often highly imbalanced, (𝑖𝑖𝑖) compatibilities
are often skewed by orders of magnitude, and (𝑖𝑣) graphs
are so large that it is infeasible to even run Holdout. Our 8
datasets are as follows:
(1) Cora [53] is also a citation graph containing publications

from 7 categories in the area of ML (neural nets, rule

learning, reinforcement learning, probabilistic methods,
theory, genetic algorithms, case based).

(2) Citeseer [53] contains 3264 publications from 6 cate-
gories in the area of Computer Science. The citation
graph connects papers from six different classes (agents,
IR, DB, AI, HCI, ML).

(3) Hep-Th [37] is the High Energy Physics Theory pub-
lication network is from arXiv e-print and covers their
citations. The node are labeled based on one of 11 years
of publication (from 1993 to 2003).

(4) MovieLens [54] is from a movie recommender system
that connects 3 classes: users, movies, and assigned tags.

(5) Enron [33] has 4 types of nodes: person, email address,
message and topic. Messages are connected to topics and
email addresses; people are connected to email addresses.

(6) Prop-37 [55] comes from a California ballot initiative
on labeling genetically engineered foods. It is based on
Twitter data and has 3 classes: users, tweets, and words.

(7) Pokec-Gender [57] is a social network graph connect-
ing people (male or female) to their friends. More inter-
action edges exist between people of opposite gender.

(8) Flickr [37] connects users to pictures they upload and
other users pictures in the same group. Pictures are also
connected to groups they are posted in.

Result 6 (Accuracy on real datasets) DCEr consistently
labels nodes with accuracy ±0.01 compared to true compati-
bility matrix for 𝑓 < 10% and ±0.03 for 𝑓 > 10% averaged
across datasets, basically indistinguishable from GS.

Our experimental setup is similar to before: we estimateH
on a random fraction 𝑓 of labeled seed sets and repeat many
times. We retrieve the Gold-Standard (GS) compatibilities
from the relative label distribution on the fully labeled graph
(if we know all labels in a graph, then we can simply “mea-
sure” the relative frequencies of classes between neighboring
nodes). The remaining nodes are then labeled with LinBP,
10 iterations, 𝑠 = 0.5, as suggested by [18].

The relative accuracy for varying 𝑓 can look quite dif-
ferently for different networks. Notice that our real-world
graphs show a wide variety of (𝑖) label imbalance, (𝑖𝑖) num-
ber of classes (2 ≤ 𝑘 ≤ 12), (𝑖𝑖𝑖) mixes of homophily and
heterophily, and (𝑖𝑣) a wide variety of skews in compati-
bilities. This variety can be seen in our illustrations of the
gold-standard compatibility matrices (Figs. 7i to 7p): we clus-
tered all nodes by their respective classes, and shades of blue
represent the relative frequency of edges between classes.
It appears that the accuracy of LinBP for varying 𝑓 can be
widely affected by combinations of graph parameters. Also,
for Movielens Fig. 7d, choosing 𝜆 = 10 worked better for
DCEr in the sparse regime (𝑓 < 1%), while 𝜆 = 1 worked bet-
ter for 𝑓 > 1%. This observation appears consistent with our

understanding of 𝜆 where larger values can amplify weaker
distant signals, yet smaller 𝜆 is enough to propagate stronger
signals. Fine-tuning of 𝜆 on real datasets remains interest-
ing future work. However, all our experiments consistently
show that our methods for learning compatibilities robustly
compete with the gold-standard and beat all other methods,
especially for sparsely labeled graphs. This suggests that our
approach renders any prior heuristics obsolete.

Scalability with increasing number of classes 𝑘 . We
know from Section 4.9 that joint complexity of our two-
step compatibility estimation is O(𝑚𝑘 + 𝑘4𝑟). For very large
graphs with small 𝑘 , the first factor stemming from graph
summarization is dominant and estimation runs in 𝑂 (𝑚𝑘),
which is faster than propagation. However, for moderate
graphs with high 𝑘 (e.g. Hep-Th with 𝑘 = 11), the second
factor can dominate since calculating the Hessian matrix
has𝑂 (𝑘4) complexity. Thus for high 𝑘 and small graphs, our
approachwill not remain faster than propagation, but inmost
practical settings estimation will act as a computationally
cheap pre-processing step.

6 CONCLUSIONS
Label propagation methods that can propagate arbitrary
class-to-class compatibilities between nodes require those
compatibilities as input. Prior work assumes these compati-
bilities as given. We instead propose methods to accurately
learn compatibilities from sparsely labeled graphs in a frac-
tion of the time it takes to later propagate the labels, resolving
the long open question of where the compatibilities come
from. The take-away for practitioners is that prior knowledge
of compatibilities is no longer necessary and estimation can
become a cheap pre-processing step before labeling.
Our approach amplifies signals from sparse data by lever-

aging algebraic properties (notably the distributive law) in
the update equations of linear label propagation algorithms,
an idea we call algebraic amplification. We use linearized
belief propagation [18], which is derived from the widely
used inference method belief propagation by applying lin-
earization as an algebraic simplification, and compliment
it with a method for parameter estimation. Thus our esti-
mation method uses the same approximations used for infer-
ence, for learning the parameters as well. Such linear methods
have well-known benefits: they have computational advan-
tages (especially during learning), have fewer parameters
(which helps with label sparsity), have fewer hyperparam-
eters (which simplifies tuning), are easier to interpret, and
have favorable algebraic properties that are crucial to our
approach. It remains to be seen how graph neural networks
(GNNs) can be adapted to similarly sparse data.

Acknowledgements. This work was supported in part by
NSF under award CAREER IIS-1762268.

REFERENCES
[1] James W. Akitt. 1977. Function Minimisation Using the Nelder and

Mead Simplex Method with Limited Arithmetic Precision: The Self
Regenerative Simplex. Comput. J. 20, 1 (1977), 84–85. https://doi.org/
10.1093/comjnl/20.1.84

[2] Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. 2007.
Non-backtracking random walks mix faster. Communications in Con-
temporary Mathematics 09, 04 (2007), 585–603. https://doi.org/10.1142/
S0219199707002551

[3] Paul Armand, Jean Charles Gilbert, and Sophie Jan-Jégou. 2000. A
Feasible BFGS Interior Point Algorithm for Solving Convex Minimiza-
tion Problems. SIAM Journal on Optimization 11, 1 (2000), 199–222.
https://doi.org/10.1137/S1052623498344720

[4] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk
van der Vorst. 2000. Templates for the solution of algebraic eigenvalue
problems. SIAM. https://doi.org/10.1137/1.9780898719581

[5] Nathan Bell, Luke Olson, and Jacob Schroder. 2011. PyAMG: Algebraic
Multigrid Solvers in Python v2.0. http://pyamg.github.io/

[6] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. 2006. La-
bel propagation and quadratic criterion. In Semi-supervised learning,
Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien (Eds.). MIT
Press, 193–216. https://doi.org/10.7551/mitpress/9780262033589.003.
0011

[7] Smriti Bhagat, Graham Cormode, and S. Muthukrishnan. 2011. Node
Classification in Social Networks. In Social Network Data Analytics,
Charu C. Aggarwal (Ed.). Springer, 115–148. http://doi.org/10.1007/
978-1-4419-8462-3_5

[8] Smriti Bhagat, Graham Cormode, and Irina Rozenbaum. 2009. Ap-
plying Link-Based Classification to Label Blogs. In Advances in Web
Mining and Web Usage Analysis (SNAKDD 2007) (LNCS), Vol. 5439.
Springer, 97–117. https://doi.org/10.1007/978-3-642-00528-2_6

[9] Sourav S. Bhowmick and Boon Siew Seah. 2016. Clustering and Sum-
marizing Protein-Protein Interaction Networks: A Survey. TKDE 28, 3
(2016), 638–658. http://dx.doi.org/10.1109/TKDE.2015.2492559

[10] Christopher M Bishop. 2006. Pattern recognition and machine learn-
ing. Springer, New York. https://www.springer.com/gp/book/
9780387310732

[11] Soumen Chakrabarti. 2007. Dynamic personalized pagerank in entity-
relation graphs. InWWW. 571–580. https://doi.org/10.1145/1242572.
1242650

[12] Xiaowei Chen, Yongkun Li, Pinghui Wang, and John C. S. Lui. 2016.
A General Framework for Estimating Graphlet Statistics via Random
Walk. PVLDB 10, 3 (2016), 253–264. https://doi.org/10.14778/3021924.
3021940

[13] David L. Donoho, ArianMaleki, and AndreaMontanari. 2009. Message-
passing algorithms for compressed sensing. PNAS 106, 45 (2009),
18914–18919. http://doi.org/10.1073/pnas.0909892106

[14] Gal Elidan, Ian McGraw, and Daphne Koller. 2006. Residual Belief
Propagation: Informed Scheduling for Asynchronous Message Passing.
In UAI. 165–173. https://doi.org/doi/10.5555/3020419.3020440

[15] Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha
Makhija, and Mohit Kumar. 2017. ZooBP: Belief Propagation for
Heterogeneous Networks. PVLDB 10, 5 (2017), 625–636. https:
//doi.org/10.14778/3055540.3055554

[16] Wolfgang Gatterbauer. 2014. Semi-Supervised Learning with Het-
erophily. CoRR abs/1412.3100 (2014). https://arxiv.org/abs/1412.3100

[17] Wolfgang Gatterbauer. 2017. The Linearization of Belief Propagation
on Pairwise Markov Random Fields. In AAAI. 3747–3753. https:
//arxiv.org/pdf/1502.04956

[18] Wolfgang Gatterbauer, Stephan Günnemann, Danai Koutra, and Chris-
tos Faloutsos. 2015. Linearized and Single-Pass Belief Propagation.

PVLDB 8, 5 (2015), 581–592. https://doi.org/doi/10.14778/2735479.
2735490

[19] Johannes Gehrke, Paul Ginsparg, and Jon Kleinberg. 2003. Overview
of the 2003 KDD Cup. SIGKDD Explor. Newsl. 5, 2 (Dec. 2003), 149–151.
https://doi.org/10.1145/980972.980992

[20] AndrewB. Goldberg, Xiaojin Zhu, and Stephen J.Wright. 2007. Dissimi-
larity in Graph-Based Semi-Supervised Classification. InAISTATS. 155–
162. http://www.jmlr.org/proceedings/papers/v2/goldberg07a.html

[21] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive
Representation Learning on Large Graphs. USA, 1025–1035. https:
//dl.acm.org/doi/10.5555/3294771.3294869

[22] Ki-ichiro Hashimoto. 1989. Zeta functions of finite graphs and rep-
resentations of p-adic groups. In Automorphic forms and geometry of
arithmetic varieties. Elsevier, 211–280. https://doi.org/10.1016/B978-0-
12-330580-0.50015-X

[23] T.H. Haveliwala. 2003. Topic-sensitive pagerank: A context-sensitive
ranking algorithm for web search. TKDE 15, 4 (2003), 784–796. https:
//doi.org/10.1109/TKDE.2003.1208999

[24] Taher Haveliwala, Sepandar Kamvar, and Glen Jeh. 2003. An Analytical
Comparison of Approaches to Personalizing PageRank. Technical Report
2003-35. Stanford InfoLab, Stanford. http://ilpubs.stanford.edu:8090/
596/

[25] Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke S. Zettlemoyer,
and Daniel S. Weld. 2011. Knowledge-Based Weak Supervision for
Information Extraction of Overlapping Relations. In ACL. 541–550.
https://www.aclweb.org/anthology/P11-1055/

[26] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001–. SciPy: Open
source scientific tools for Python. http://www.scipy.org/.

[27] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In ICLR (Poster). https:
//openreview.net/forum?id=SJU4ayYgl

[28] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Mod-
els: Principles and Techniques - Adaptive Computation and Machine
Learning. The MIT Press. https://doi.org/doi/book/10.5555/1795555

[29] Danai Koutra, Tai-You Ke, U. Kang, Duen Horng Chau, Hsing-Kuo Ken-
neth Pao, and Christos Faloutsos. 2011. Unifying Guilt-by-Association
Approaches: Theorems and Fast Algorithms. In ECML/PKDD (2). 245–
260. http://dx.doi.org/10.1007/978-3-642-23783-6_16

[30] Krishna Kumar P., Paul Langton, and Wolfgang Gatterbauer. 2020.
Factorized graph representations for semi-supervised learning from
sparse data. CoRR abs/2003.02829 (2020). https://arxiv.org/abs/2003.
02829

[31] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman,
Allan Sly, Lenka Zdeborová, and Pan Zhang. 2013. Spectral redemption
in clustering sparse networks. PNAS 110, 52 (2013), 20935–20940.
http://dx.doi.org/10.1073/pnas.1312486110

[32] Chul-Ho Lee, Xin Xu, and Do Young Eun. 2012. Beyond RandomWalk
and Metropolis-hastings Samplers: Why You Should Not Backtrack
for Unbiased Graph Sampling. In SIGMETRICS. 319–330. http://dx.
doi.org/10.1145/2254756.2254795

[33] Jiongqian Liang, Deepak Ajwani, Patrick K. Nicholson, Alessandra
Sala, and Srinivasan Parthasarathy. 2016. What Links Alice and Bob?:
Matching and Ranking Semantic Patterns in Heterogeneous Networks.
In WWW. 879–889. http://doi.acm.org/10.1145/2872427.2883007

[34] Frank Lin andWilliamW. Cohen. 2010. Semi-Supervised Classification
of Network Data Using Very Few Labels. In ASONAM. 192–199. http:
//dx.doi.org/10.1109/ASONAM.2010.19

[35] Qing Lu and Lise Getoor. 2003. Link-based Classification. In ICML.
496–503. http://www.aaai.org/Library/ICML/2003/icml03-066.php

[36] Travis Martin, Xiao Zhang, and M. E. J. Newman. 2014. Localization
and centrality in networks. Phys. Rev. E 90 (Nov 2014), 052808. Issue 5.
http://doi.org/10.1103/PhysRevE.90.052808

https://doi.org/10.1093/comjnl/20.1.84
https://doi.org/10.1093/comjnl/20.1.84
https://doi.org/10.1142/S0219199707002551
https://doi.org/10.1142/S0219199707002551
https://doi.org/10.1137/S1052623498344720
https://doi.org/10.1137/1.9780898719581
http://pyamg.github.io/
https://doi.org/10.7551/mitpress/9780262033589.003.0011
https://doi.org/10.7551/mitpress/9780262033589.003.0011
http://doi.org/10.1007/978-1-4419-8462-3_5
http://doi.org/10.1007/978-1-4419-8462-3_5
https://doi.org/10.1007/978-3-642-00528-2_6
http://dx.doi.org/10.1109/TKDE.2015.2492559
https://www.springer.com/gp/book/9780387310732
https://www.springer.com/gp/book/9780387310732
https://doi.org/10.1145/1242572.1242650
https://doi.org/10.1145/1242572.1242650
https://doi.org/10.14778/3021924.3021940
https://doi.org/10.14778/3021924.3021940
http://doi.org/10.1073/pnas.0909892106
https://doi.org/doi/10.5555/3020419.3020440
https://doi.org/10.14778/3055540.3055554
https://doi.org/10.14778/3055540.3055554
https://arxiv.org/abs/1412.3100
https://arxiv.org/pdf/1502.04956
https://arxiv.org/pdf/1502.04956
https://doi.org/doi/10.14778/2735479.2735490
https://doi.org/doi/10.14778/2735479.2735490
https://doi.org/10.1145/980972.980992
http://www.jmlr.org/proceedings/papers/v2/goldberg07a.html
https://dl.acm.org/doi/10.5555/3294771.3294869
https://dl.acm.org/doi/10.5555/3294771.3294869
https://doi.org/10.1016/B978-0-12-330580-0.50015-X
https://doi.org/10.1016/B978-0-12-330580-0.50015-X
https://doi.org/10.1109/TKDE.2003.1208999
https://doi.org/10.1109/TKDE.2003.1208999
http://ilpubs.stanford.edu:8090/596/
http://ilpubs.stanford.edu:8090/596/
https://www.aclweb.org/anthology/P11-1055/
http://www.scipy.org/
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/doi/book/10.5555/1795555
http://dx.doi.org/10.1007/978-3-642-23783-6_16
https://arxiv.org/abs/2003.02829
https://arxiv.org/abs/2003.02829
http://dx.doi.org/10.1073/pnas.1312486110
http://dx.doi.org/10.1145/2254756.2254795
http://dx.doi.org/10.1145/2254756.2254795
http://doi.acm.org/10.1145/2872427.2883007
http://dx.doi.org/10.1109/ASONAM.2010.19
http://dx.doi.org/10.1109/ASONAM.2010.19
http://www.aaai.org/Library/ICML/2003/icml03-066.php
http://doi.org/10.1103/PhysRevE.90.052808

[37] Julian J. McAuley and Jure Leskovec. 2012. Image Labeling on a Net-
work: Using Social-Network Metadata for Image Classification. In
ECCV. 828–841. https://doi.org/10.1007/978-3-642-33765-9_59

[38] Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. Steier,
and Christos Faloutsos. 2009. SNARE: a link analytic system for graph
labeling and risk detection. In KDD. 1265–1274. http://doi.acm.org/10.
1145/1557019.1557155

[39] MikeMintz, Steven Bills, Rion Snow, and Daniel Jurafsky. 2009. Distant
supervision for relation extraction without labeled data. In ACL. 1003–
1011. https://www.aclweb.org/anthology/P09-1113/

[40] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2012.
Foundations of machine learning. MIT Press, Cambridge, MA. https:
//cs.nyu.edu/~mohri/mlbook/

[41] Joris M. Mooij and Hilbert J. Kappen. 2007. Sufficient Conditions for
Convergence of the Sum-Product Algorithm. IEEE Transactions on
Information Theory 53, 12 (2007), 4422–4437. http://doi.org/10.1109/
TIT.2007.909166

[42] Cristopher Moore, Xiaoran Yan, Yaojia Zhu, Jean-Baptiste Rouquier,
and Terran Lane. 2011. Active learning for node classification in
assortative and disassortative networks. In KDD. 841–849. http://doi.
acm.org/10.1145/2020408.2020552

[43] John Moore and Jennifer Neville. 2017. Deep Collective Inference.
In AAAI. 2364–2372. http://aaai.org/ocs/index.php/AAAI/AAAI17/
paper/view/14650

[44] Kevin P. Murphy. 2012. Machine learning: a probabilistic perspective.
MIT Press, Cambridge, MA. https://mitpress.mit.edu/books/machine-
learning-1

[45] DA Olteanu and Maximilian Schleich. 2016. Factorized databases.
SIGMOD Record 45, 2 (2016). https://doi.org/10.1145/3003665.3003667

[46] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
1999. The PageRank Citation Ranking: Bringing Order to the Web. TR
1999-66. Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/

[47] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu.
2004. Automatic Multimedia Cross-modal Correlation Discovery. In
KDD. 653–658. https://doi.org/10.1145/1014052.1014135

[48] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos
Faloutsos. 2007. Netprobe: a fast and scalable system for fraud detection
in online auction networks. InWWW. 201–210. http://doi.acm.org/10.
1145/1242572.1242600

[49] Pedregosa et. al. 2011. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12 (2011), 2825–2830. http:
//scikit-learn.org.

[50] Leto Peel. 2017. Graph-based semi-supervised learning for rela-
tional networks. In ICDM. SIAM, 435–443. https://doi.org/10.1137/1.
9781611974973.49

[51] Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan
Fries, Sen Wu, and Christopher Ré. 2017. Snorkel: Rapid Training
Data Creation with Weak Supervision. PVLDB 11, 3 (2017), 269–282.
https://doi.org/10.14778/3157794.3157797

[52] Prithviraj Sen and Lise Getoor. 2007. Link-based classification. Tech-
nical Report. University of Maryland Technical Report CS-TR-4858.

https://drum.lib.umd.edu/bitstream/handle/1903/4298/report.pdf
[53] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian

Gallagher, and Tina Eliassi-Rad. 2008. Collective Classification in
Network Data. AI Magazine 29, 3 (2008), 93–106. https://doi.org/10.
1609/aimag.v29i3.2157

[54] Shilad Sen, Jesse Vig, and John Riedl. 2009. Tagommenders: connecting
users to items through tags. In WWW. 671–680. https://doi.org/10.
1145/1526709.1526800

[55] Laura M Smith, Linhong Zhu, Kristina Lerman, and Zornitsa Kozareva.
2013. The role of social media in the discussion of controversial topics.
In SocialCom. IEEE, 236–243. https://doi.org/10.1109/SocialCom.2013.
41

[56] Amarnag Subramanya and Partha Pratim Talukdar. 2014. Graph-
Based Semi-Supervised Learning. Synthesis Lectures on Artificial In-
telligence and Machine Learning 8, 4 (2014), 1–125. http://doi.org/10.
2200/S00590ED1V01Y201408AIM029

[57] Lubos Takac and Michal Zabovsky. 2012. Data analysis in public social
networks. https://snap.stanford.edu/data/soc-pokec.pdf

[58] Leo Torres, Pablo Suárez-Serrato, and Tina Eliassi-Rad. 2019. Non-
backtracking cycles: length spectrum theory and graph mining ap-
plications. Applied Network Science 4, 1 (2019), 41:1–41:35. https:
//doi.org/10.1007/s41109-019-0147-y

[59] S. van der Walt, S. C. Colbert, and G. Varoquaux. 2011. The NumPy
Array: A Structure for Efficient Numerical Computation. Computing in
Science Engineering 13, 2 (March 2011), 22–30. http://docs.scipy.org/.

[60] Fei Wang and Changshui Zhang. 2008. Label Propagation through
Linear Neighborhoods. TKDE 20, 1 (2008), 55–67. https://doi.org/10.
1109/TKDE.2007.190672

[61] Yair Weiss. 2000. Correctness of Local Probability Propagation in
Graphical Models with Loops. Neural Computation 12, 1 (2000), 1–41.
http://doi.org/10.1162/089976600300015880

[62] I. H Witten, Eibe Frank, and Mark A Hall. 2011. Data mining: practical
machine learning tools and techniques (3rd ed ed.). Morgan Kauf-
mann, Burlington, MA. http://www.sciencedirect.com/science/book/
9780123748560

[63] Mingrui Wu and Bernhard Schölkopf. 2007. Transductive Clas-
sification via Local Learning Regularization. In AISTATS. 628–635.
http://proceedings.mlr.press/v2/wu07a.html

[64] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,
and Bernhard Schölkopf. 2003. Learning with Local and Global Con-
sistency. In NIPS. 321–328. https://dl.acm.org/doi/10.5555/2981345.
2981386

[65] Xiaojin Zhu. 2005. Semi-Supervised Learning Literature Survey. Techni-
cal Report 1530. Computer Sciences, University of Wisconsin-Madison.
https://minds.wisconsin.edu/handle/1793/60444

[66] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. 2003. Semi-
Supervised Learning Using Gaussian Fields and Harmonic Functions.
In ICML. 912–919. https://dl.acm.org/doi/10.5555/3041838.3041953

[67] Xiaojin Zhu, Jaz Kandola, John Lafferty, and Zoubin Ghahramani. 2006.
Graph Kernels by Spectral Transforms. In Semi-supervised learning.
MIT Press, 277–291. https://doi.org/10.7551/mitpress/9780262033589.
001.0001

https://doi.org/10.1007/978-3-642-33765-9_59
http://doi.acm.org/10.1145/1557019.1557155
http://doi.acm.org/10.1145/1557019.1557155
https://www.aclweb.org/anthology/P09-1113/
https://cs.nyu.edu/~mohri/mlbook/
https://cs.nyu.edu/~mohri/mlbook/
http://doi.org/10.1109/TIT.2007.909166
http://doi.org/10.1109/TIT.2007.909166
http://doi.acm.org/10.1145/2020408.2020552
http://doi.acm.org/10.1145/2020408.2020552
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14650
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14650
https://mitpress.mit.edu/books/machine-learning-1
https://mitpress.mit.edu/books/machine-learning-1
https://doi.org/10.1145/3003665.3003667
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1145/1014052.1014135
http://doi.acm.org/10.1145/1242572.1242600
http://doi.acm.org/10.1145/1242572.1242600
http://scikit-learn.org
http://scikit-learn.org
https://doi.org/10.1137/1.9781611974973.49
https://doi.org/10.1137/1.9781611974973.49
https://doi.org/10.14778/3157794.3157797
https://drum.lib.umd.edu/bitstream/handle/1903/4298/report.pdf
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1145/1526709.1526800
https://doi.org/10.1145/1526709.1526800
https://doi.org/10.1109/SocialCom.2013.41
https://doi.org/10.1109/SocialCom.2013.41
http://doi.org/10.2200/S00590ED1V01Y201408AIM029
http://doi.org/10.2200/S00590ED1V01Y201408AIM029
https://snap.stanford.edu/data/soc-pokec.pdf
https://doi.org/10.1007/s41109-019-0147-y
https://doi.org/10.1007/s41109-019-0147-y
http://docs.scipy.org/
https://doi.org/10.1109/TKDE.2007.190672
https://doi.org/10.1109/TKDE.2007.190672
http://doi.org/10.1162/089976600300015880
http://www.sciencedirect.com/science/book/9780123748560
http://www.sciencedirect.com/science/book/9780123748560
http://proceedings.mlr.press/v2/wu07a.html
https://dl.acm.org/doi/10.5555/2981345.2981386
https://dl.acm.org/doi/10.5555/2981345.2981386
https://minds.wisconsin.edu/handle/1793/60444
https://dl.acm.org/doi/10.5555/3041838.3041953
https://doi.org/10.7551/mitpress/9780262033589.001.0001
https://doi.org/10.7551/mitpress/9780262033589.001.0001

	Abstract
	1 Introduction
	2 Formal setup and related work
	2.1 Semi-Supervised Learning (SSL)
	2.2 Belief Propagation (BP)
	2.3 Linearized Belief Propagation
	2.4 Iterative Classification Methods
	2.5 Recent Neural Network Approaches
	2.6 Non-Backtracking Paths (NB)
	2.7 Distant Supervision

	3 Properties of Label Propagation
	3.1 Propagating Frequency Distributions
	3.2 Labeling as Energy Minimization

	4 Compatibility Estimation
	4.1 Baseline: Holdout Method
	4.2 Linear Compatibility Estimation (LCE)
	4.3 Myopic Compatibility Estimation: MCE
	4.4 Distant Compatibility Estimation: DCE
	4.5 Non-Backtracking Paths (NB)
	4.6 Scalable, Factorized Path Summation
	4.7 Gradient-based Optimization
	4.8 DCE with Restarts (DCEr)
	4.9 Complexity Analysis

	5 Experiments
	5.1 Accuracy of Compatibility Estimation
	5.2 Scalability of Compatibility Estimation
	5.3 Performance on Real-World Datasets

	6 Conclusions
	References

