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ABSTRACT
Speeding up probabilistic inference remains a key challenge

in probabilistic databases (PDBs) and the related area of

statistical relational learning (SRL). Since computing proba-

bilities for query answers is #P-hard, even for fairly simple

conjunctive queries, both the PDB and SRL communities

have proposed a number of approximation techniques over

the years. The two prevalent techniques are either (i) MCMC-

style sampling or (ii) branch-and-bound (B&B) algorithms

that iteratively improve model-based bounds using a combi-

nation of variable substitution and elimination.

We propose a new anytime B&B approximation scheme
that encompasses all prior model-based approximation sche-

mes proposed in the PDB and SRL literature. Our approach

relies on the novel idea of “scaled dissociation” which can

improve both the upper and lower bounds of existing model-

based algorithms. We apply our approach to the well-studied

problem of evaluating self-join-free conjunctive queries over

tuple-independent PDBs, and show a consistent reduction in

approximation error in our experiments on TPC-H, Yago3,

and a synthetic benchmark setting.
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U X p
u1 a 0.4
u2 f 0.6

R X Y p
r1 a b 0.3
r2 a e 0.4
r3 f e 0.6

S Y Z p
s1 b c 0.8
s2 b d 0.4
s3 e d 0.3

T Z p
t1 c 0.2
t2 d 0.9

Figure 1: Example 1: PDB (D,p).

1 INTRODUCTION
Probabilistic databases (PDBs) [46] address the pressing need

of managing large amounts of uncertain data directly inside a

relational database system. Popular examples of large, uncer-

tain datasets include those obtained from information extrac-

tion (e.g., Probase [49], DeepDive [45], or Google’s Knowl-

edge Vault [13]), sensors (e.g., RFID data [29]), and many

others. Millions to billions of uncertain tuples reside in these

datasets as the result of automatic extraction, integration, or

transformation from various data sources. Apart from just

managing uncertain data, query processing over uncertain

data remains a major challenge in PDBs and the broader field

of statistical relational learning (SRL) [36]. Query processing

in PDBs is based on the possible worlds semantics [46] and

is closely related to the problem of weighted model count-

ing [24] over Boolean expressions in SRL.

Within the PDB context, the seminal dichotomy theorem

by Dalvi and Suciu [8, 9] states that the query-answering

problem for unions of conjunctive queries (UCQs) over a

tuple-independent PDB (TI-PDB) has either PTIME data com-

plexity or is #P-hard. A main result based on the theorem is

that self-join-free (sj-free) CQs with PTIME data complexity

can be characterized concisely as “hierarchical” queries [46].

These can be processed by an “extensional” query plan, in

which the computation of the answer tuples’ probabilities is

coupled with the standard relational operations. For “non-

hierarchical” queries, however, computing the exact mar-

ginal probabilities of the query answers is intractable, in

general. Consequently, these queries need to be processed by

an “intensional” query evaluation, based on Boolean lineage
expressions [3, 18, 46], by which the marginal probabilities

of the query answers can then be approximated.

Example 1 (Running example). Consider the example
PDB, denoted as (D,p), from Fig. 1. The following sj-free full
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CQ Q1(X ,Y ,Z ) :−U (X ),R(X ,Y ), S(Y ,Z ),T (Z ) is hierarchical
and can be evaluated in PTIME. The criterion is that the existen-
tial variables of a query form a “hierarchy” (here all 3 variables
are head variables and there are no existential variables). That
is, all lineage expressions of query answers produced byQ1 are
guaranteed to be free of repeated occurrences of tuple identi-
fiers [32]. The lineage expression for the query answer (a,b, c)
to Q1 over D is φQ1,D (a,b, c) = u1r1s1t1 (where we abbreviate
conjunctions of the form x ∧ y by writing x y). Assuming tu-
ple independence, the marginal probability of this answer is
computed as P[φQ1,D (a,b, c)] = 0.4 · 0.3 · 0.8 · 0.2 ≈ 0.019.

However, the Boolean version of this query,Q2 :−U (X ),R(X ,
Y ), S(Y ,Z ),T (Z ), is not hierarchical, since the sets of relations
in which the non-head variables X , Y , and Z occur do not form
a hierarchy. Using the query plan U Z (R Z (S Z T )), a
possible factorization of the lineage expression forQ2 over D is

φQ2,D = u1(r1(s1t1 ∨ s2t2) ∨ r2s3t2) ∨ u2r3s3t2.

In general, calculating this probability is intractable and needs
to be approximated. Here, this resolves toP[φQ2,D ] ≈ 0.170. ♦

Our Focus. We focus on these intractable cases and de-

vise an anytime approximation framework to approximate
the probability of a monotone Boolean lineage with guaran-

teed upper and lower bounds. An “anytime algorithm” is an

algorithm that can return an approximate solution to a prob-

lem for any allocation of time, and finds better and better

solutions the longer it keeps running [5, 50]. We develop

our approach for non-hierarchical sj-free CQs and their as-

sociated lineages in the widely studied tuple-independent

(TI) data model. Since the hardness results already apply to

this simple model, it is apt to first consider TI-PDBs before

moving to more complicated models that take correlations

into account (e.g., [43]). Moreover, it was shown that cor-

relations (e.g., as introduced by a Markov Logic Network)

can be rewritten into a query over a tuple independent prob-

abilistic database [22, 26]. In this way, TI-PDBs are a basic

building block for a wide range of applications. Also notice

that calculating the marginal probability of a Boolean lineage

expression is closely related to the weighted model counting
(WMC) problem [42], and it is well known that probabilistic

inference in probabilistic graphical models can be reduced

to WMC [7]. Thus our approach is also of interest to the

general probabilistic reasoning and SRL communities.

State-of-the-Art. A number of methods for approximat-

ing the marginal probabilities of query answers have been

developed (see Sect. 8 as well as [12] for a recent overview).

The two prevalent techniques are either based on (i) MCMC-
style sampling [6, 8, 37] or on (ii) branch-and-bound (B&B)

methods. The latter iteratively compute model-based bounds
[16, 17, 35] (see Example 2 below) over a Boolean lineage ex-

pression by using a combination of variable substitution and

elimination. Both approaches allow anytime approximations:
the more time the approaches are allowed to run, the bet-

ter the bounds become. While MCMC-based approaches are

the more common approach for approximate probabilistic

inference, B&B approaches have been shown to work faster

and better for monotone queries, such as UCQs [16]. In this

context, our anytime approximation framework relies on the

following three ingredients:

(1) Scaled Dissociations. Recent work [19] suggests so-

called “dissociation”-based bounds for monotone Boolean

formulas. These bounds were shown to generalize model-

based bounds, but have so far only been applied as one-shot

approximations at the query level [19–21]. In addition, empir-

ical results of [19–21] showed that, while the upper bounds

appear to work well (they are provably better than all model-

based bounds), the lower “symmetric” bounds obtained by

plan-level dissociations usually are poor approximations. In

fact, they can often be far worse than the best model-based

lower bounds. One of our key contributions is the introduc-

tion of “scaled dissociations”, i.e., dissociation-based lower

bounds that are guaranteed to be – at least theoretically –

the best lower oblivious bounds and to thus always dominate

model-based lower bounds.

Example 2 (Running example cont.). Consider φQ2,D
from Example 1. Its lineage-level dissociation yields

φ ′Q2,D = u1(r1(s1t1 ∨ s2t
′
2
) ∨ r2s

′
3
t ′′
2
) ∨ u2r3s

′′
3
t ′′′
2

where all repeated occurrences of s3 and t2 are replaced by fresh
variables (indicated by apostrophes). In [19], it was shown that
the best “oblivious” upper bound (UB) for P[φQ2,D ] ≈ 0.170 is
obtained by assigning pU (t ′2) = pU (t

′′
2
) = pU (t

′′′
2
) = p(t2) =

0.9, pU (s ′3) = pU (s
′′
3
) = p(s3) = 0.3 and pU (x) = p(x) for all

other tuple identifiers x inφ ′, thus resulting in PU [φ ′] ≈ 0.180.
By contrast, for lower bounding P[φQ2,D ], we obtain a contin-
uum of oblivious lower bounds (LBs) by assigning probabilities
pL to {t ′2, t

′′
2
, t ′′′

2
, s ′

3
, s ′′

3
} s.t. p̄L(t ′2)·p̄L(t

′′
2
)·p̄L(t

′′′
2
) = p̄(t2) = 0.1

and p̄L(s
′
3
) · p̄L(s

′′
3
) = p̄(s3) = 0.7 (where, here and later,

p̄ := 1 − p), and pL(x) = p(x) for all other identifiers.
One special case are the model-based (MB) bounds of [16,

17, 34], in which a single occurrence of an identifier obtains
all of the probability mass. In this example, the best MB LB
PL[φ

′] ≈ 0.110 is obtained by pL([t
′
2
, t ′′

2
, t ′′′

2
]) = [0, 0, 0.9]

and pL([s ′3, s
′′
3
]) = [0, 0.3]. An exhaustive enumeration of all 6

possible model-based bounds is needed to find the best one.
Alternatively, one may also generate a symmetric dissoci-

ation (SD) LB [20, 21] in which all occurrences get the same
share, i.e., pL(t ′2) = pL(t

′′
2
) = pL(t

′′′
2
) = 1 − p̄(t2)

1/3 ≈ 0.535

and pL(s
′
3
) = pL(s

′′
3
) = 1 − p̄(s3)

1/2 ≈ 0.163, resulting in
PL[φ

′] ≈ 0.083, which is actually worse than the MB LB.
The best-possible assignment, however, is the scaled disso-

ciation (the subject of this paper) pL(t ′2) ≈ 0.468, pL(t ′′2 ) ≈ 0,



pL(t
′′′
2
) ≈ 0.811, pL(s ′3) = 0 and pL(s ′′3 ) = 0.3, thus resulting in

PL[φ
′] ≈ 0.122. Hence, we obtain 0.122 ≤ P[φQ2,D ] ≤ 0.180

as an approximation. Note that the lower and upper bounds are
called “oblivious” here, since the probabilities of the substituted
tuple identifiers do not depend on any other variables in the
formula [19]. One of our main contributions are these scaled
dissociations that complement the optimal upper bounds, and
together improve upon existing model-based approximation
schemes for both upper and lower bounds. ♦

(2) Constrained Optimization. For “scaling” (i.e., re-

weighting) the dissociations of tuple identifiers at the lineage

level, we make use of two sets of constraints, indicating how

tuple probabilities should be scaled. For the resulting up-

per bounds, we are already guaranteed to improve over the

model-based version. These are proven to be the optimal

“oblivious” choice in [21], and hence they do not require

further optimization. By contrast, the constraint set for the

lower bounds results in an entire continuum of possible as-

signments (see Example 2), some of which correspond to

model-based bounds. We aim to find the optimal choice (the
scaled dissociation) among the entire continuum. Having a

non-linear optimization problem at hand, there is no practical

method that can find the (global) optimal solution. Instead,

we use gradient descent based methods [4] to find candi-

date (local) optimal solutions. In our experiments, we never

observed getting stuck in a local optimum, however.

(3) Decomposition Scheme. Since a single dissociation
step (even when scaled to the best-possible choice of pro-

babilities) only provides a single, static interval for the true

marginal probability of each query answer, we additionally

employ the iterative decomposition scheme used in [16, 17, 35]
and integrate this with dissociated lineage formulas and

their scaled dissociations. This scheme locates independent

subformulas, and further combines this step with Shannon

expansions (SE) [46] to eliminate variables with multiple oc-

currences. After decomposition, a single optimization step is

again performed, and this repeats until a desired approxima-

tion accuracy threshold is met. By using scaled dissociations

instead of simpler one-shot model-based bounds, we open

up additional possibilities for configuring this current state-

of-the-art B&B approach from [16, 17, 35].

Contributions. In summary, we propose a new anytime
approximation framework for approximating the marginal

probabilities of query answers to non-hierarchical sj-free

CQs (hard queries), based on a combination of optimal obliv-
ious upper bounds and scaled dissociations as lower bounds.
Under the hood, constrained optimization techniques are in

place to find the optimal choice of weights for the scaled dis-

sociations at the lineage-level. The framework generalizes
prior state-of-the-art and is shown to, both theoretically and

empirically, outperform existing model-based methods. More

specifically, we achieve a 42%-81% reduction in aggregate

in approximation error for a variety of hard queries over

TPC-H, Yago3 and a synthetic benchmark.

2 FORMAL BACKGROUND
We next introduce our basic notions related to probabilistic

query evaluation, lineages, dissociations, as well as the in-

fluence of variables on those lineages. We loosely follow the

notation and concepts of [46] but also include more recent

concepts from [14, 16, 17, 34], [19–21] and [27, 39].

Probabilistic Databases & Conjunctive Queries. We

consider a fixed relational vocabulary Σ = (R1, . . . ,Rm). A
tuple-independent probabilistic database (PDB) (D,p) is a data-
base D over Σ, plus a probability function p : D → [0, 1]
associating a probability p(t) to each tuple t ∈ D. A possible

world is a subset of D generated by independently including

each tuple t in the world with probability p(t). We further

associate with each tuple t a binary random variable xt . Pos-
sible worlds can be represented by setting xt = 0 if t does
not belong to the respective world, and xt = 1 if it does.

Furthermore, when ranging over all possible worlds, the

marginal probability P[xt = 1] = p(t) captures the proba-
bility that t is contained in a randomly chosen subset of D.
We consider conjunctive queries (CQs), i.e., first-order for-
mulas Q(Y) = ∃X1 . . . ∃Xk (д1 ∧ · · · ∧ дm) where each atom

(or subgoal) дi represents a relation Ri (Xi ). The variables

X1, . . . ,Xk are called existential variables, while variables in

Y are called the head (or “free”) variables . These queries cor-

respond to Select-Project-Join queries in SQL and Relational

Algebra [1]. We focus on self-join-free CQs (“sj-free CQs”) in
which the atoms дi represent distinct relational symbols.

The focus of probabilistic query evaluation is to compute

themarginal probability P[Q(D,p)] for a Boolean queryQ , i.e.,

to compute the probability that the query evaluates to true
in a randomly chosen world. We will write P[Q] for short
if (D,p) are clear from the context. We focus on Boolean

queries, since the probabilistic query evaluation problem for

non-Boolean queries reduces to the Boolean query case in

a direct way [46]. Examples for the above concepts were

already provided in our Introduction.

Lineage Expressions & Read-Once Form. It is well-

known that a CQ can be evaluated over a tuple-independent

PDB by first computing the lineage of each query answer

(which is a positive Boolean expression over the variables xt
that represents all possible derivations of that answer) and by

subsequently evaluating the probabilities of the lineage for-

mula [3, 18, 46]. The general problem of conjunctive-query

evaluation has first been shown to be #P-hard in [8]. How-

ever, if a lineage formula can be represented in read-once
(or “single-occurrence”) form (1OF) [23, 25, 32] (a Boolean

formula in which each literal appears exactly once), then its



marginal probability can be computed in polynomial time

in the number of literals. Indeed, for a 1OF-formula φ, P[φ]
can be calculated in linear time in the size of the formula, by

applying the following two rules recursively:

P[φ] =

{
P[φ1] · P[φ2] for φ = φ1 ∧ φ2

P[φ1] ⊗ P[φ2] for φ = φ1 ∨ φ2

where p1 ⊗ p2 := 1− ((1−p1) · (1−p2)). These rules, referred

to as the independent-and (⊙) and independent-or (⊗) rule,
respectively, can be applied whenever vars(φ1)∩vars(φ2) = ∅

where vars(φ) denotes the set of variables in a formulaφ. This
is trivially satisfied for 1OF formulas.

Shannon Expansions. If φ is not read-once, P[φ] can be

computed by applying one or more Shannon expansions [46]

φ ≡
(
x ∧ φ[1/x]

)
∨
(
¬x ∧ φ[0/x]

)
which decompose φ into mutually exclusive subformulas

by substituting a variable x in φ[1/x] and φ[0/x] with the

constants true and false, respectively. For the resulting de-

composition, the following equality then holds

P[φ] = p(x) · P[φ[1/x]] +
(
1 − p(x)

)
· P[φ[0/x]]

which we will refer to as the exclusive-or rule (⊕). We note

that repeated Shannon expansions will eventually result in

a 1OF representation of φ, however at the cost of potentially
doubling the size of the formula at each such expansion.

Lineage-Level Dissociations. Let φ and φ ′ be two Boo-

lean formulas with variables x and x′, respectively. We say

that φ ′ is a dissociation of φ if there exists a substitution

θ : x′→ x such thatφ ′[θ ] = φ. If θ−1(x) = {x ′
1
, . . . , x ′d }, then

we say that variable x dissociates into d variables x ′
1
, . . . , x ′d .

Of particular interest in this paper are 1OF dissociations, i.e.,
dissociationsφ ′ which are in 1OF. Every lineage has a unique
1OF dissociation up to renaming of variables. Specializing

previous results on oblivious bounds [19] to 1OF dissocia-

tions, the following property is key to our approach:

Theorem 1. [19] Let φ be a lineage of a sj-free CQ, and let
φ ′[θ ] be its 1OF dissociation for a substitution θ . Consider a
probability function p : vars(φ) → [0, 1]. Then,
(1) for functions pU : vars(φ ′) → [0, 1] such that

pU (x
′) ≥ p(x)

with x ∈ vars(φ) and x ′ ∈ θ−1(x), and
(2) for functions pL : vars(φ ′) → [0, 1] such that⊗

x ′∈θ−1(x )

pL(x
′) ≤ p(x) (1)

with x ∈ vars(φ),
it holds that

PL[φ
′] ≤ P[φ] ≤ PU [φ

′]

where PL[φ ′] and PU [φ ′] are obtained by assigning pL and pU
to the variables in φ ′, respectively.

0.0 0.9 1.0
P(t′2)

0.0

0.9

1.0

P(
t′
′ 2
)

0.04

0.06

0.08

0.10

0.12
0.14

0.147

0.157

0.151

0.115

0.117

0.055

0.122

Figure 2: Example 3: The green and gray values show the
marginal probability ofψ ′ for varying p(t ′

2
) and p(t ′′

2
).

The upper and lower bounds (UBs and LBs) obtained here

are called “oblivious”, since the probabilities assigned by pL
andpU to the variables in θ−1(x) depend only onp(x) and not
on the probability of any other variable in φ. Observe that
PL[φ

′] and PU [φ
′] can be computed in PTIME. Furthermore,

the best oblivious UB pU is obtained by setting pU (x
′) = p(x)

for all x ∈ vars(φ) and x ′ ∈ θ−1(x) [19]. By contrast, any

function pL satisfying the inequalities (1) results in a LB for

P[φ]. The best such lower bounds are those that satisfy (1),

in which the inequality is replaced by equality [19].

Model-based Approximations. A model-based approx-
imation (MB) of φ consists of two 1OF formulas, φU and φL ,
obtained from φ by assigning to one occurrence of each vari-

able the original probability of the variable and assigning

all other occurrences of the variable the value true, for φU ,
and the value false, for φL (recall Example 2). It is known

that P[φL] ≤ P[φ] ≤ P[φU ] [16, 17]. It is readily verified

that these MB bounds can be seen as special instances of

the more general dissociation-based bounds. Indeed, one can

first “fully” dissociate φ into φ ′, such that each variable x in

φ dissociates into dx variables x ′
1
, . . . , x ′dx in φ ′ where dx is

the number of occurrences of x in φ. Furthermore, setting

variables to true (resp. false) in φU (resp. φL) can be simu-

lated by assigning probabilities 1 (resp. 0) to some dissociated

variables in φ ′. One obtains functions pU and pL in this way

such that PU [φ
′] = P[φU ] and PL[φ

′] = P[φL].

Example 3. Consider a lineageψ and its 1OF dissociation:

ψ = u1(r1(s1t1 ∨ s2t2)) ∨ u2r3s3t2

ψ ′ = u1(r1(s1t1 ∨ s2t
′
2
)) ∨ u2r3s3t

′′
2

As an illustration of Theorem 1, Fig. 2 depicts the space of pos-
sible choices of pL and pU for the substituted tuples t ′

2
, t ′′

2
. As

for LBs, model-based (MB) bounds are either 0.055 or 0.115,
the symmetric-dissociation (SD) bound (which assigns t ′

2
and

t ′′
2
equal probability) is 0.117, and the optimal dissociation

bound is 0.122. All other valid lower bounds lie in the curved
shaded area with the best ones residing on the boundary (bold
curved line). As for UBs, MB bounds return either 0.151 or
0.157, while the dissociation-based bound is 0.147. We note



that 0.122 ≤ P[ψ ] ≈ 0.140 ≤ 0.147 (bounds are rounded) in
accordance with Theorem 1. ♦

Influence. The notion of influence quantifies the impact

of changes in the probabilities of variables on the marginal

probability of a Boolean formula φ. Formally, let Fφ (x) be a
function from Rn to R where n is the number of variables in

φ and x ∈ [0, 1]n . Let Fφ (x) = P[φ] where x is interpreted as

a function associating a probability p(x) with each of the n
variables in φ. The influence inflx ,φ (x) of variable x on P[φ]
is then defined as follows [27, 39]:

inflx ,φ (x) :=
∂Fφ (x)
∂x

It is known that inflx ,φ (x) = P[φ[1/x]]−P[φ[0/x]]. As before,
inflx ,φ (x) can be efficiently computed when φ is in 1OF [27].

In general however, computing inflx ,φ (x) inherits the #P-

hardness from computing P[φ].

3 PROBLEM STATEMENT
We are interested in approximating the marginal probability

P[φ] of a positive Boolean lineage φ expression to arbitrary

precision. We follow the notions of [16]. Given a threshold

ε > 0, find a probability p̂ that is a relative ε-approximation1

of P[φ], such that the following inequalities hold:

(1 − ε) · P[φ] ≤ p̂ ≤ (1 + ε) · P[φ]

Given a pair of probabilities (L,U ) that fulfill the two condi-

tions (i) P[φ] ∈ [L,U ] and (ii) (1−ε) ·U ≤ (1+ε) ·L, then any

value p̂ ∈ [(1− ε) ·U , (1+ ε) · L] is a relative ε-approximation

of P[φ]. We call a pair (L,U ) an ε-valid interval bound for
P[φ] and U−L

L+U the interval’s approximation error.
Our approach is to iteratively obtain ε-valid interval bounds,

as inspired by earlier works on anytime approximation algo-

rithms for Boolean lineage expressions [14, 16, 17]. Two key

steps underly our method: (1) an approximation of P[φ] and
(2) an iterative decomposition of lineages.

(1) Approximation. We make calls to an approximation

“module” that takes as input a lineage φ and returns an inter-

val [L,U ] (not necessarily ε-valid) containing P[φ].
In prior work [14, 16, 17], the interval [L,U ] is obtained

by a model-based approximation φL and φU of φ. Recall that
MB approximations need to make choices of which variable

occurrences in φ to retain in φL and φU . Different choices
may result in different intervals, and choosing the “best”

occurrences of variables to retain is a combinatorial problem:

if there are n variables that occur d times each, then there

are dn different choices (e.g., for lineages from queries over

the Yago3 dataset, n = 1 225 and avg(d) ≈ 5.61, see Fig. 5).

Trying all of them to obtain the best interval is not possible.

1
While we focus here on the most widely used “relative approximation” ,

the approach also extends to the simpler absolute ε -approximation [16] or

more advanced approximations like odds ratios [21] in an obvious way.

Also recall that MB bounds can be seen as special instances

of more general dissociation-based bounds [19].

These observations motivate us to replace previously used

MB bounds with better dissociation-based bounds. We as-

sociate with φ its 1OF dissociation φ ′ and let L := PL[φ
′]

andU := PU [φ
′], where pL and pU are as in Theorem 1. Re-

call that the upper bound (UB) PU [φ
′] associated with the

uniquely defined pU from dissociation is shown to be tighter
than any MB bound [19]. By contrast, there is a whole con-

tinuum of choices for pL , each of which results in a different

lower bound (LB) (recall Examples 2 and 3). Our problem

then is to find the best such pL among all dissociation-based

oblivious LBs for a given lineage. This problem (i) becomes

a continuous optimization problem instead of a combinato-

rial one, and (ii) when solved exactly, it will always result

in improvements over MB bounds. We refer to these new,

not necessarily model-based, bounds as scaled dissociations
and develop optimization techniques in Sect. 4 to guide us

towards these scaled dissociations.

Problem 1 (Scaled dissociation). Given a positive Boo-
lean formulaφ, its 1OF dissociationφ ′, and a probability func-
tionp, find a scaled dissociation, i.e., a probability functionpL ,
defined on the variables of φ ′, such that PL[φ ′] is an oblivious
LB of P[φ] and PL[φ ′] is maximal among all such LBs.

(2) Decomposition (or Expansion). There is a limit to

howwell a given lineageφ can be approximated by model- or

dissociation-based bounds. Any resulting interval represents

only a single, static “snapshot” of bounds, and we need itera-

tive decomposition techniques to reduce the approximation

error further whenever our bounds do not suffice.

In the model-based setting [16, 17], φ is decomposed (i.e.,

Shannon expanded) into an equivalent form

(
x ∧ φ[1/x]

)
∨(

¬x ∧ φ[0/x]
)
for some variable x in φ. Then, the probabili-

ties of φ[1/x] and φ[0/x] are further approximated by MB

bounds. This is repeated until an ε-valid interval bound is

obtained. In Sect. 5, we show that this approach generalizes

to obtain dissociation-based lower and upper bounds, by de-

composing the dissociated lineages and carefully adjusting

the probability functions pL and pU .

Problem 2 (Dissociation-based Anytime Approxima-

tion). Find an anytime approximation algorithm that inte-
grates dissociation-based bounds with a Shannon expansion-
based decomposition.

4 FINDING SCALED DISSOCIATIONS
We first approach Problem 1 by phrasing it as a constrained

(i.e., non-linear) optimization problem based on the lower-

bound characterization given in Theorem 1 (Sect. 2). A direct

encoding of this problem results in an optimization problem



with non-convex objective function and constraints, thus pre-

venting the application of standard gradient-descent based

optimization techniques. Nevertheless, we show that after a

change of variables, the constraint set can be assumed to be

convex (Sect. 4.1). In Sect. 4.2, we then recall two well-known

gradient-based optimization techniques, projected gradient
descent (PGD) and conditional gradient descent (CGD) [4].
Our key insight is that both of these methods can be run with

either fixed or diminishing step sizes, thereby alleviating the

need to re-evaluate probabilities multiple times in each step

(Appendix A). This is important in our setting, since com-

puting marginals, although in PTIME for 1OF lineages, can

be time-consuming due to the size of the lineages involved

in practice (see Fig. 5).

4.1 Optimization Problem
We start by rephrasing the problem of finding a scaled disso-

ciation as a constrained optimization problem. Let φ ′(x′) be
the 1OF dissociation of φ(x) for substitution θ , i.e., φ ′[θ ] = φ.
Consider the function Fφ ′ : [0, 1]m → [0, 1], defined as

Fφ ′(x′) := P[φ ′(x′)] where m denotes the number of vari-

ables in x′. On input values q ∈ [0, 1]m , Fφ ′(q) returns the
probability Pq[φ

′(x′)] where q is regarded as a probability

function, i.e., q(x ′i ) = qi . Since φ
′
is in 1OF, the independent-

and and independent-or rules for computing Pq[φ
′(x′)] can

also be applied when q takes values outside [0, 1]m . We can

therefore regard Fφ ′ as a function from Rm to R.
As stipulated by Theorem 1, to find a scaled dissociation,

we need to maximize Fφ ′(x′) for valid values of x′. In partic-

ular, for each variable xi in φ, we define a constraint

Ci :=
{
q ∈ [0, 1]di | ⊗j ∈[di ]qj = p(xi )

}
,

where di is the number of fresh variables that each xi is dis-
sociated into. In other words, Ci corresponds to probability

assignments to the variables in θ−1(xi ) for which the lower

bound condition of Theorem 1 (with equality) holds for vari-

able xi . Hence, finding a scaled dissociation pours down to

finding a probability assignment pL , such that

pL := argmax

{
Fφ ′(q1

, . . . , qn) | qi ∈ Ci , i ∈ [n]
}
. (SLB)

The resulting constraint setsCi are non-convex and therefore
prevent the application of standard optimization techniques.

A simple change of variables, however, allows us to rephrase

the former optimization problem (SLB) as an optimization

problem over convex sets. Indeed, observe that q ∈ Ci iff,

for each j ∈ [di ], there exists an α j ∈ [0, 1], s.t. q̄j = p̄(xi )
α j

and

∑
j ∈[di ] α j = 1 (which follows fromCi , as q̄1 · q̄2 · · · q̄di =

p̄(xi )). We now consider the (convex) probability simplexes

∆i :=
{
α ∈ [0, 1]di |

∑
j ∈[di ]

α j = 1

}
,

for i ∈ [n] and the function Gφ ′ : Rm → R, defined as

Gφ ′(α 1, . . . ,αn) := −Fφ ′
(
1 − p̄(x1)

α 1, . . . , 1 − p̄(xn)
α n

)
,

where 1 − p̄(xi )
α i

denotes the vector (1 − p̄(xi )
αi1, . . . , 1 −

p̄(xi )
αidi ), for α i = (αi1, . . . ,αidi ). Finding a scaled dissocia-

tion is now equivalent to solving the following optimization

problem over convex sets:

α⋆
:= argmin

{
Gφ ′(α 1, . . . ,αn) | α i ∈ ∆i , i ∈ [n]

}
. (SLB

′
)

Indeed, a solution pL of (SLB) corresponds to a solution α⋆

of (SLB
′
), with the relationship between the two given by

pL = (1 − p̄(x1)
α⋆

1 , . . . , 1 − p̄(xn)
α⋆
n ), and vice versa. Thus:

Proposition 1. A scaled dissociation can be found by solv-
ing the latter optimization problem (SLB′).

4.2 Gradient Descent Methods
The optimization of non-convex functions over convex sets

is widely studied (see, e.g., [4] for an overview). We focus

here on two standard techniques. We let ∆ = ∆1 × · · · × ∆n .

Projected Gradient Descent. Starting from an initial

point α (0) in ∆, this method generates a sequence of points

α (t ) in ∆. Given α (t ), the next point α (t+1)
is obtained by

first moving along the gradient direction, i.e., β (t+1)
= α (t ) −

ηt∇Gφ ′(α (t )) for some step size ηt , followed by a projection
of β (t+1)

on ∆, resulting in α (t+1) ∈ ∆. In particular,

α (t+1) = argmin

α ∈∆
∥α − β (t+1)

∥2,

i.e., α (t+1)
is the point in ∆ closest to β (t+1)

relative to the

Euclidean norm ∥ · ∥2. While such a projection is in generally

complex to compute, the projection on simplexes ∆i and ∆
can however be computed efficiently [48].

Conditional Gradient Descent (Frank-Wolfe). As in

PGD, a sequence of points α (t ) is generated, starting from

α (0). By contrast to PGD, projection is avoided by considering
a linear combination of α (t ) ∈ ∆ and γ (t ) ∈ ∆, i.e., α (t+1) =

α (t ) + ηt (γ (t ) − α (t )), for some step size ηt . Furthermore,

γ (t ) ∈ ∆ is found by solving another optimization problem:

γ (t ) = argmin

γ ∈∆
∇Gφ ′(α

(t ))′ · (γ − α (t )).

We again benefit from having simplexes as constraint sets. In-

deed, on simplexes ∆, such aγ (t ) can be efficiently computed

(see Example 3.2.1 in [4]). Indeed, recall thatγ (t ) = (γ (t )
1
, . . . ,

γ (t )n ) where γ
(t )
i is a di -dimensional vector corresponding to

variables in θ−1(xi ). It is known that setting γ (t )ik = 1, for each

i ∈ [n], when k is an index that minimizes

∂Gφ′

∂αik
(α (t )), and

γ (t )iℓ = 0, for ℓ ∈ [di ] distinct from k , results in a solution

γ (t ) of the above optimization problem. In other words, the

optimum γ (t ) needs to be a corner point in the simplex.



In both PGD and CGD, we can take as initial point α (0),
e.g., the “symmetric” point in which, for each i ∈ [n] and j ∈

[di ], we set α
(0)

i j := 1/di . This corresponds to the symmetric

dissociation-based lower bound, as described in Example 2.

We also point out that these methods provide points in the

simplex ∆ in each step. This implies that in every step a

corresponding lower bound PL[φ
′] for P[φ] is obtained.

A well-known issue with gradient-based methods (or any

other methods for that matter) for solving non-linear op-

timization problems is that they may converge to a local

optimum rather than to the desired global optimum. As such,

our methods may not necessarily find the desired optimal

scaled dissociation. This implies that we may not necessarily

improve on MB lower bounds. Yet, we did not observe this

behaviour in our experiments. We also note that finding the

scaled dissociations is only one part of our approximation

scheme. Even if we were to be stuck in a local optimum,

subsequent Shannon expansions may get us back on track.

5 ANYTIME APPROXIMATION
ALGORITHM (AAA)

So far, we know how to obtain a pair of probability functions

pL and pU , s.t. PL[φ
′] ≤ P[φ] ≤ PU [φ

′], for a given 1OF

dissociation φ ′ of a positive Boolean formula φ ′. This yields
a single, static interval of lower and upper bounds which

cannot be further improved by using dissociations alone.

We next describe how dissociation-based approximations

can be gracefully embedded into an incremental lineage-
compilation algorithm which can approximate P[φ] to ar-

bitrary precision. The compilation techniques are inspired

by previous anytime approximation frameworks [14, 16, 17],

yet generalize and substantially improve them. The core

of our resulting anytime approximation algorithm (AAA) is
depicted in Algorithm 1. It contains the three procedures,

(1) OptimizeBounds, (2) PickLeaf and (3) SelectVariable,
which can be instantiated in various ways.

d-Trees. AAA uses the same representation of lineages as

[16], so-called “decomposition trees” (d-trees, for short). A
d-tree is simply a formula constructed with ⊗ (independent-
or), ⊙ (independent-and), and ⊕ (exclusive-or) as the inner

nodes of the tree, while propositional formulas form the

leaves. Any propositional formula can be recursively com-

piled into a d-tree, as shown in Lines 13 and 14 for ⊗, Lines 15

and 16 for ⊙, and Lines 17 to 20 for ⊕. More specifically, the

⊕-decomposition involves the selection of a leafψ and a vari-

ablex ∈ vars(ψ ) (procedures PickLeaf and SelectVariable
in Lines 17 and 18) followed by the Shannon expansion

(x ⊙ψ [1/x]) ⊕ (¬x ⊙ψ [0/x]) (Line 20). In the following, φ in-

terchangeably denotes a lineage or a d-tree; this will always

be clear from the context. Lower and upper bounds on the

probabilities of the leaves (i.e., formulas) can be propagated

Algorithm: AAA (Anytime Approximation Algorithm)
Input: d-tree φ in which each leaf ψ is associated with a 1OF

dissociation ψ ′ and probability functions pL and pU ,

accuracy bound ε , probability function p
Output: ε -valid interval bound [L,U ]

1 PL ← ∅; PU ← ∅
2 if Global then
3 for each leaf ψ do
4 p′L , p

′
U ← OptimizeBounds(ψ ,ψ ′, pL , pU , p)

5 PL ← PL ∪ {p′L }; PU ← PU ∪ {p′U };

6 else if Local then
7 Let ψ := PickLeaf(φ , p)
8 p′L , p

′
U ← OptimizeBounds(ψ ,ψ ′, pL , pU , p)

9 PL ← PL ∪ {p′L }; PU ← PU ∪ {p′U };

10 L ← PropagateUp(φ , PL ); U ← PropagateUp(φ , PU )
11 if (1 − ε ) ·U < (1 + ε ) · L then return [L,U ]
12 while ∃ leaf ψ that is decomposable do
13 if ∃ ψ1,ψ2, s.t.

(
ψ = ψ1 ∨ψ2

)
&

(
vars(ψ1) ∩ vars(ψ2) = ∅

)
then

14 For Y ∈ {ψ ,ψ ′, p′L , p
′
U }: replace Y with Y1 ⊗ Y2

15 if ∃ ψ1,ψ2, s.t.
(
ψ = ψ1 ∧ψ2

)
&

(
vars(ψ1) ∩ vars(ψ2) = ∅

)
then

16 For Y ∈ {ψ ,ψ ′, p′L , p
′
U }: replace Y with Y1 ⊙ Y2

17 Let ψ :=PickLeaf(φ , p)
18 Let x :=SelectVariable(ψ )
19 Let ψ1 = ψ [1/x ] and ψ2 = ψ [0/x ]
20 For Y ∈ {ψ ,ψ ′, p′L , p

′
U }: replace Y with (x ⊙ Y1) ⊕ (¬x ⊙ Y2)

21 return AAA(φ , ε , p) (Note: φ is the updated d-tree)

Algorithm 1: Recursive anytime approx. algorithm.

to bounds on the entire d-tree (representing the original

lineage φ) by means of the three computation rules given

earlier, i.e., Pq[φ1 ⊙ φ2] = Pq[φ1] · Pq[φ2], Pq[φ1 ⊗ φ2] =

1−(1−Pq[φ2])·(1−Pq[φ2]), and Pq[φ1⊕φ2] = Pq[φ1]+Pq[φ2],

whereq refers to eitherpL orpU . To approximate P[φ], it thus
suffices to compile φ into a d-tree, s.t. the probability of each

of the leaves can be approximated well enough. One may

safely stop when all leaves are 1OF, as then the exact proba-

bility can be computed in linear time in the size of the d-tree,

which however may be exponentially large. In Algorithm 1,

procedure PropagateUp takes care of the computation of

the bounds L and U (Line 10), based on the structure of d-

tree φ and the collections PL and PU of probability functions

associated with the 1OF dissociations at the leaves.

Incremental Compilation. Bringing the dissociations

into picture is fairly simple now. Not only do we compile

φ into a d-tree, but also during φ’s decomposition we carry

along a 1OF dissociation φ ′ of φ (for substitution θ ) and
probability functions pL and pU defined over the variables in

φ ′. We decompose these together with φ. More specifically,

when a leaf ψ decomposes in ψ1 ⊙ ψ2 or ψ1 ⊗ ψ2, then it is

easily verified that we can also decomposeψ ′ = ψ ′
1
⊙ψ ′

2
or

ψ ′ = ψ ′
1
⊗ψ ′

2
, respectively, whereψ ′i is a 1OF dissociation of



It Step d-Tree Associated 1OF dissociation ≈ L ≈ U U −L
L+U bound

1

Initial φQ2 ,D = u1(r1(s1t1 ∨ s2t2) ∨ r2s3t2) ∨ u2r3s3t2
φ ′Q2 ,D

= u1(r1(s1t1 ∨ s2t ′2) ∨ r2s ′3t
′′
2
) ∨ u2r3s ′′3 t

′′′
2

0.114 0.274 0.41 MB
0.083 0.180 0.37 PGD

Optimize φQ2 ,D = u1(r1(s1t1 ∨ s2t2) ∨ r2s3t2) ∨ u2r3s3t2 φ ′Q2 ,D
= u1(r1(s1t1 ∨ s2t ′2) ∨ r2s ′3t

′′
2
) ∨ u2r3s ′′3 t

′′′
2

0.122 0.180 0.19 PGD

2

Expand φQ2 ,D = (s3 ⊙ φ[1/s3]) ⊕ (¬s3 ⊙ φ[0/s3]) φ ′Q2 ,D
= (s3 ⊙ φ ′1) ⊕ (¬s3 ⊙ φ ′2)

0.139 0.176 0.11 MB
0.122 0.172 0.17 PGD

Optimize φQ2 ,D = (s3 ⊙ φ[1/s3]) ⊕ (¬s3 ⊙ φ[0/s3]) φ ′Q2 ,D
= (s3 ⊙ φ ′1) ⊕ (¬s3 ⊙ φ ′2) 0.146 0.172 0.08 PGD

Figure 3: Running Example 4: Run of AAA with PGD (blue) or MB (red) on φQ2,D and φ ′Q2,D
from Examples 1 and 2.

ψi , for i = 1, 2. Similarly, for pL and pU ; these get split into
p1

L and p1

U forψ ′
1
, and p2

L and p2

U forψ ′
2
, by simply restricting

pL and pU to the appropriate sets of variables. When ψ is

Shannon-expanded into (x ⊙ ψ [1/x]) ⊕ (¬x ⊙ ψ [0/x]), we
considerψ ′

1
= ψ ′[1/θ−1(x)] andψ ′

2
= ψ ′[0/θ−1(x)], obtained

from ψ ′ by setting all variables in θ−1(x) to true or false,

respectively, and thereby obtain 1OF dissociations ofψ [1/x]
andψ [0/x]. We furthermore ensure thatψ ′

1
andψ ′

2
have no

variables in common, by applying an additional substitution.

This is to ensure that each leaf can be optimized separately.

Again, pL and pU are decomposed by restricting variables

(and possibly rescaling) whenever one or more occurrences

of variables other than x are removed by the expansion. It

can be verified (see Appendix C) that, when starting from

a 1OF lineage φ ′ of φ and functions pL and pU satisfying

the conditions of Theorem 1, then these conditions remain

satisfied after each decomposition step, thus justifying the

following proposition.

Proposition 2. In every step of the algorithm, every leafψ
in the d-tree has a 1OF-dissociation ψ ′ and probability func-
tions pL and pU associated with it, such that PL[ψ ′] ≤ P[ψ ] ≤
PU [ψ

′] holds.

We thus obtain an approximation of P[φ] after each de-

composition step by recursively calling PropagateUp. Fur-
thermore, we can show that L and U can never deteriorate

by applying any of the three decomposition steps (again see

Appendix for details).

Obtaining ε-Valid Bounds.Algorithm AAA continues de-
composing lineages, associated dissociations, and probabil-

ity functions until an ε-valid interval bound for P[φ] is ob-
tained (Line 11). Furthermore, AAA allows an additional op-

timization of the probability functions for the dissociations

in the leaves (procedure OptimizeBounds, Lines 4 and 8).

Intuitively, this is to accommodate for finding the scaled dis-

sociation (lower bound) after each decomposition step, but

other optimization methods (such as model-based) can be

plugged in as well (see the next section). Furthermore, we al-

low either a local or global (G) optimization, where a global

optimization calls OptimizeBounds on every leaf (Lines 2

to 5), whereas a local (L) optimization uses PickLeaf to

pick a single leaf to optimize (Lines 6 to 9). To guarantee that

we gradually move towards an ε-valid bound and keep the

bounds valid at all times, we require the updated functions

from OptimizeBounds to satisfy the conditions in Theorem 1

and only accept them if they lead to an improvement in the

quality of the approximation. Since—in the worst case—we

eventually end up with a d-tree, in which all leaves are 1OF,

we are guaranteed to generate an ε-valid interval bound for

P[φ]. Example 4 illustrates the algorithm and demonstrates

that choosing scaled dissociation lower bounds may lead to

a valid bound faster than using model-based bounds.

Example 4. In Fig. 3, we list the different steps of AAA, start-
ing with φQ2,D and φ ′Q2,D

from Examples 1 and 2, and for
ε = 0.1. Blue-shaded entries for L,U and approximation error
U−L
L+U correspond to applying projected gradient descent (PGD)
during the optimization step; pU is kept fixed as the optimal
oblivious upper bound (UB), whereas pL is initialized by the
symmetric dissociation-based lower bound (SD LB) (see Exam-
ple 2). Then Algorithm AAA calls OptimizeBounds using PGD
to find the best scaled dissociation LB for the given dissociated
lineage expression. The error decreases from 0.37 to 0.19, but
is not yet below ε . Next AAA performs a Shannon expansion
(iteration 2), here on s3, resulting in a new dissociated lineage
with improved UB and error of 0.17. We pass the leaves of the
expanded d-tree to OptimizeBounds. Since φ[0/s3] is in 1OF
and needs no further approximation, onlyφ[1/s3] is optimized
for its LB for its dissociation φ ′

1
using again PGD. Propagat-

ing the obtained bounds for φ[1/s3] back up, we get L ≈ 0.146,
U ≈ 0.172, and an error of 0.08 < ε . Hence, (L,U ) is an ε-valid
interval bound for the true yet unknown P[φQ2,D ] ≈ 0.170.
As comparison, we also show in red the trace of AAA when

the best model-based (MB) UBs and LBs are used, which are
one-shot and no optimization is possible. After one Shannon
expansion (iteration 2), we obtain an error of 0.11, still above
ε . As a consequence, a additional Shannon expansion is needed
(on t2, not shown). This results in a d-tree in which all leaves
are 1OF. As a consequence, the exact probability P[φQ2,D ] will
be returned, at the expense of an extra Shannon expansion. ♦

Runtime Optimizations. We apply the following run-

time optimizations to further accelerate the execution of

Algorithm 1, by decreasing the size of the leaf formulas.

• If there exists a sub-formula χ at a leaf ψ which only

contains variables with single occurrences, we replace the

entire sub-formula with a new variable x so that p(x) = P(χ ).
We can calculate P(χ ) exactly, since the sub-formula is in 1OF.



Procedure Decisions Choices

OptimizeBounds
Method MB, SD, PGDd , CGDd
#Steps 1, 10

Strategy local (L), global (G)

SelectVariable Selection

Occmax(O), Imax(I),
Weighted Imax(WI)

Figure 4: Overview of all instantiations of our framework.
We use Method/Selection/#Steps/Strategy to denote specific
configurations for the decisions. For example, CGDd/I/10/G
uses CGDd as optimization method, Imax to select variables
for Shannon expansion, performs up to 10 steps of CGDd be-
fore the next decomposition, and uses the global optimiza-
tion strategy.We also allow MB (which originally did not have
multiple optimization steps) to run repeatedly and return
the best model-based bound found. For example, MB/O/10/L
picks the best from 10 randomly chosen MB bounds. By
contrast, the SDmethod is inherently single-step and global.
This results in a total of 39 different instantiations. (3 × 2 ×

2 × 3 = 36 for MB, PGD, CGD; 1 × 1 × 1 × 3 = 3 for SD.)

This does not affect P(ψ ), but may substantially decrease the

size of the overall formula.

• The second reduction deals with implications. If a leaf

contains conjunctions (resp. disjunctions) which are always

false (resp. true), the entire conjunction (resp. disjunction)

is replaced with false (resp. true). This can occur due to the

substitution in Line 20 of AAA. We thereby again reduce the

sizes of the leaves. A possible side-effect is that occurrences

of other variables are eliminated as well. To ensure that

we still have valid lower bounds, the probability mass of

the removed occurrences is evenly re-distributed among the

remaining occurrences.

Both of these run-time optimizations are performed ex-

haustively at the start of the algorithm (for the first optimiza-

tion) and after each SE step, to reduce the size of the lineage

φ as much as possible.

6 INSTANTIATIONS OF AAA
The algorithm AAA provides a framework in which different

strategies for procedures (1) OptimizeBounds, (2) PickLeaf
and (3) SelectVariable can be plugged in. We next describe

several such instantiations which will serve as the basis of

our experiments.

(1) OptimizeBounds.Wenext describe four differentmeth-

ods for obtaining lower (LBs) and upper bounds (UBs).

(a) MB uses randomly chosen model-based bounds as pro-
posed by [16, 17, 34]. For LBs p ′L : for each variable xi ∈
vars(ψ ), with di dissociated occurrences x ′i j ∈ vars(ψ

′), pick

k ∈ [di ] at random, and set p ′L(x
′
ik ) = p(xi ) and p

′
L(x
′
i j ) = 0

for j , k . Analogously, for UBs p ′U : pick k ∈ [di ] at random,

and set p ′U (x
′
ik ) = p(xi ) and p

′
U (x

′
i j ) = 1 for j , k .

(b) SD uses the symmetric dissociations from [20, 21]. For

LBs p ′L : for each variable xi ∈ vars(ψ ), with di dissociated

occurrences x ′i j , we setp
′
L(x
′
i j ) = 1−p̄(xi )

1/di
. For UBsp ′U : we

use the optimal dissociation-based UB, i.e., p ′U (x
′
i j ) = p(xi ).

(c) PGD and CGD use optimal dissociation-based UBs, just as

in SD. For LBs, however, they use scaled dissociations, i.e., an
“optimal” p ′L obtained by using the projected gradient descent
(resp. conditional gradient descent) methods. Both methods

are initialized by symmetric dissociations and use step sizes

determined by the Lipschitz constant (see Appendix A).

Dampening (d). In our experiments, we observed that

the Lipschitz constant L is sometimes large, thus leading to

very small step sizes. Furthermore, optimal values of Gφ ′

are often situated on the boundaries of the simplex ∆. Small

step sizes, however, require many iterations to reach these

boundaries and thus reduce the performance of the inference

algorithm. Motivated by this, we modify the step sizes ηt in
PGD and CGD methods by “damping,” which is inspired by a

similar technique used in belief propagation [30]:

• PGDd : To increase the likelihood that points on the bound-
ary of ∆ are reached, we move in the first step to a point

outside ∆ (that way, the resulting point lies on the boundary

of ∆ after the projection). To this aim, instead of using a

single step size across all simplexes ∆i , we consider a vector

ηt = (η
(t )
1
, . . . ,η(t )n ) of step sizes, one for each ∆i . We set the

initial step size η(0)i to 1/maxk ∈[di ]
{ ∂Gφ′

∂αik

}
. This ensures that

the next β (1) will be pushed outside the simplex and that

projection is again necessary. To recover correctness, we use

damping:We setη(t+1) = η(t ) in caseGφ ′(α (t−1)) > Gφ ′(α (t )),
i.e., when we move in the “right” direction; otherwise, we

dampen the step size: η(t+1) = 3/4 · η(t ). When damping is

applied sufficiently many times, we reach a step size smaller

than 2/L, from which correctness follows.

• CGDd : We always start with the maximal step size, i.e.,

η0 = 1, and use damping as just described. We cannot guaran-

tee that step sizes will become small enough after damping,

since correct step sizes depend on the gradient at the cur-

rent point. Nevertheless, experiments show that CGDd has a

positive impact on the overall query approximation.

Both PGDd and CGDd start from the symmetric dissociation

lower bound as a starting point and use optimal dissociation-

based both for the upper bound. Our experiments (not in-

cluded) show that these variants always outperform their

standard counterparts. We therefore only report on PGDd and

CGDd in our experiments.

(2) PickLeaf. For PickLeaf we use the heuristic also em-

ployed in [16], which picks the leaf with the highest differ-

ence between upper and lower bound

ψ⋆
:= argmax

ψ

(
PU [ψ

′] − PL[ψ
′]
)
,



whereψ ranges over all leaves in φ (when seen as a d-tree).
We break ties arbitrarily.

(3) SelectVariable.We next focus on different choices

for selecting the variable used in a Shannon expansion. •

Occmax is used by [16, 17] and selects the variable x in the

chosen leafψ with the highest number of occurrences. Again,

ties are broken arbitrarily. Thus, Occmax returns:

x := argmax

x ∈ψ
dx

where x ranges over all variables inψ in the current d-tree.

Notice that Occmax does not use information on probabilities.

• Imax is a new heuristic selection method based on in-

fluence (see Sect. 2). Intuitively, it selects the variable x in a

leafψ that has the largest sum of influences on the overall

probability, summing over its occurrences inψ ’s dissociation.
We break ties arbitrarily. Thus, Imax returns:

x := argmax

x ∈ψ

( ∑
x ′i ∈θ

−1(x )

inflx ′i ,ψ ′(pL)
)

• Weighted Imax is a variant of Imax where we multi-

ply the sum of influences of occurrences with the original

variable probability. Thus, Weighted Imax returns:

x := argmax

x ∈ψ

(
p(x) ·

∑
x ′i ∈θ

−1(x )

inflx ′i ,ψ ′(pL)
)

To conclude, a summary of all methods and how we refer

to specific combinations of variants can be found in Fig. 4.

Our experiments will show that all methods work well.

Nevertheless, we propose the method PGDd/O/1/G as the

method of choice since it performs consistently well for

all lineages considered.

7 EXPERIMENTS
Our experiments answer one key question: what is the aver-
age relative error over time for various instantiations of our
anytime approximation framework and prior work?

We provide a detailed comparison of our methods that ap-

proximate the best oblivious bounds (PGDd and CGDd ) against
two state-of-the-art baselines for approximate inference: the

model-based method (MB) of [16, 17] and the symmetric disso-
ciation (SD) bounds of [20, 21], which had never been applied

at the lineage level. We also explore the impact of different

instantiations of our approach (Fig. 4).

We first examine the effect of our different configurations

in detail on synthetically generated data, and then validate

our results by testing our winning methods against the ex-

isting ones on two real-life datasets.

Reproducibility. The code to reproduce our results will

bemade available at: http://github.com/northeastern-datalab/

scaled-dissociations

7.1 Common Experimental Setup
We start by describing the general setup for the experiments.

Datasets & Lineages.We implemented a synthetic gen-

erator for queries and datasets (see Sect. 7.2) and use two real-

life data sets and corresponding sets of queries: Yago3 [31]

and TPC-H [47] using a scale factor of 1 (see Sect. 7.4).

In all these settings, we obtain lineages by enumerating

all dissociation query plans and choosing up to 5 plans at
random. Furthermore, we initialize tuple probabilities in the

datasets with 15 different random seeds (5 according to a uni-
form distribution, 5 according to a normal distribution with

µ = 0.25 andσ = 0.2, and 5 according to an exponential distri-
bution with λ = 1). All probabilities take values in the range

of (0, 0.5]. The values of the parameters are chosen so that

they provide interesting values for query probabilities. We

only consider non-hierarchical sj-free conjunctive queries

for which inference is #P-hard, and we excluded any lineages

that were already in 1OF at the start, and any lineages whose

upper and lower bounds were 1 (due to numerical precision).

All combined, a total of 4800 such lineages were con-
structed from the queries over the three datasets (3060 for the

synthetic datasets, 765 for Yago3 and 975 for TPC-H). Further

statistics of these lineages are shown in Fig. 5. Note that we

count the number of variables as the number of variables

with repeated occurrences, as those determine the hardness

of a problem (variables that occur only once are reduced to a

single constant by the reduce operation and act as constants

in the optimization process). Likewise, the number of occur-

rences is counted only over repeated variables. Number of

nodes, however, include all tuple variables.

The query plans run in the order of seconds. While naive

probabilistic query plans are slower than standard relational

queries (sometimes substantially because they prescribe a

particular join order which may not be optimal), it is known

that their running time can be brought down close to that

of standard deterministic query evaluation by first applying

a simple deterministic semi-join reduction, and then running

the probabilistic plan on the reduced data [21]. Since the

focus of this paper is on the quality/runtime trade-off be-

tween various approximation methods, we ignore the time

consumed for relational processing and the construction of

lineage structures, which are common to all approaches.

Experimental Runs. For each of the 39 instantiations
described in Fig. 4 and each lineage, we let AAA run for 30
seconds, storing the obtained relative approximation error

ε after each iteration. Here, an iteration consist of a single

optimization and expansion (recall Example 4). As described

in Sect. 3, the approximation error is given by
U−L
U+L which

provides the smallest ε for which [L,U ] is a guaranteed ε-
valid interval bound. We then divide the number of iterations

into 30 time windows of 1 second, where the minimal error

http://github.com/northeastern-datalab/scaled-dissociations
http://github.com/northeastern-datalab/scaled-dissociations


Nodes Variables Occurrences avg(degree)

Synthetic 25,125 1,021 16,442 11.0

Yago3 18,918 1,225 16,735 5.61

TPC-H 41,919 4,035 17,063 5.45

Figure 5: Average numbers of nodes in a tree-representation
of the lineage, average number of repeated variables and
their occurrences, and average degree (occurrences per vari-
able) in the lineage expressions for our 3 datasets.

for each window is kept. The figures below show the average

of these minimal errors per window over all lineages for each

instantiation. Only one in three points is shown.

Comparison with State-of-the-Art. We do not com-

pare to sampling as SPROUT [16, 17], which is a special case

of our method, was already shown to outperform sampling-

based methods. However, we do compare to the approach

used by SPROUT. More specifically, it is readily verified that

SPROUT’s approximation method corresponds to instantia-

tion MB/O/1/L in our framework, i.e., it uses a single MB

bound, performs local optimization and uses Occmax for vari-
able selection [16, 17]. Our experiments have shown that

MB/O/10/L performs better than MB/O/1/L (thus choosing

the best among 10 random MB bounds in each iteration is

better than choosing just one random MB bound). Thus,

MB/O/10/L in the experiments corresponds to an improved

state-of-the-art competitor.

General Setup. All experiments are run on an Intel Xeon

32x2.5 GHz server with 32 GB RAM and 16 physical cores,

using PostgreSQL 8.3.3 as a storage backend for the data. We

implemented all methods in Python 2.7.

7.2 30-Second Runs on Synthetic Data
Queries.Our synthetic generator creates queries and datasets
from which lineage formulas are then constructed. We use

three types of queries, each of which takes a size parameter

k to parameterize it. Chain queries are defined as:

Q∞k :−R1(X1),R2(X1,X2), . . . ,Rk−1(Xk−2,Xk−1),Rk (Xk−1)

Q2 in Example 1 is an instantiation of a chain query with

k = 3. Cycle queries are defined as:

Q◦k :−R1(Xk ,X1),R2(X1,X2), . . . ,Rk (Xk−1,Xk )

And Star queries are defined as:

Q⋆
k :−R0(X1, . . . ,Xk ),R1(X1), . . . ,Rk (Xk )

Data. For each query, we construct a domain with a fixed

domain size d for all query variables X1,X2, . . . . We then

give normalized weights to each element in the domain by

sampling from a uniform, normal or exponential domain
distribution. We then construct tuples for each relation by

sampling from the domains of the variables using the re-

spective weights. We found that setting the number of tuples

Parameter Values

Query type chain, cycle, star

Query length (k ) 3, 4, 5

Domain size (d ) 100, 200

Number of tuples 500

Domain distribution uniform, normal, exponential

Figure 6: Parameters and values for synthetic dataset. In to-
tal, we have 54 different configurations (3 × 3 × 2 × 1 × 3).

in each relation to 500 provided interesting lineages that

were neither too small (and therefore trivial) nor too large to

manage. Note that only a subset of these tuples is included

in the lineage, those that participate in a join. The statistics

in Fig. 5 show that we got a good spread of lineage sizes that

are comparable to those in the real-life datasets.

Configurations. In total we have 54 different configura-
tions (see Fig. 6), each of which gets repeated between 25 and

125 times depending on the number of query plans that exist.

This leads to 3060 lineages. We use this synthetic experiment

to find out which instantiations of the algorithm (see Fig. 4)

work best and what the effect of each of the methods is on

the overall efficiency and accuracy.

(1) Overall Results.We first focus is on comparing our

new optimization-based methods against the existing model-

based (MB) and symmetric dissociation (SD) methods.

Our optimization-based methods reduce the approximation
error, on average, by 81% on synthetic data.

• Figure 7c shows a confusion matrix that compares the

approximation error of different instantiations of AAA and

shows in how many cases each method in the row header

is at least 10
−2

(resp. 10
−4
) better than the one in the col-

umn header. For each of the optimization methods (MB, SD,
CGDd ,PGDd ), we only report the best configuration for the

other decisions. Best here means the method that has the

highest sum over the elements in its row in Fig. 7c (i.e., “won”

more times than the others in total). As expected, our new

optimization methods PGDd and CGDd outperform the oth-

ers with a significant margin. Out of all 3060 lineages, the

optimization-based methods win at least 74% (resp. 82%) of

the time with a difference of 10
−2

(resp. 10
−4
) in approxima-

tion error against either of the existing methods, whereas

they are almost never beaten themselves.

• Figure 7a shows the approximation error over time for

each instantiation: it is clear that the two optimization meth-

ods very quickly decrease the error in the beginning, whereas

the others taper off almost immediately. On average, the op-

timization methods decrease the error by 81%.

(2) Impact of instantiation decisions.We compare the

impact of the design decisions (Fig. 4) on performance for
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Method PGDd /O/1/G CGDd /O/1/G MB/O/10/G SD/O/1/G

PGDd /O/1/G – 26% (44%) 75% (83%) 75% (82%)
CGDd /O/1/G 3% (24%) – 75% (83%) 75% (82%)

MB/O/10/G 0% ( 0%) 0% (0%) – 37% (51%)

SD/O/1/G 0% ( 0%) 0% (0%) 15% (29%) –

(c)

Figure 7: Results on the synthetic data show a consistent im-
provement of our methods over prior ones: (a) The approxi-
mation error after 30 sec gets reduced by 81%, on average. (b)
The number of optimization steps affects our methods con-
siderably. (c) The prior methods never outperform ours: the
fraction of lineages for which each method in a row has a
smaller approximation error after 30 seconds than the one
in the column, with difference at least 10

−2 (resp. 10
−4). For

each bounding method, we chose the best instantiations.

PGDd and MB. We examine one parameter at a time and leave

all others to the winning configurations from Fig. 7a.

The optimization-basedmethods outperform the existing ones
significantly across any combination of design decisions. The
most important decision is the number of steps, whereas dif-
ferent variable selection methods and local vs. global opti-
mization make little difference.

• The number of optimization steps noticeably im-

pacts the performance of the PGDd method. In Fig. 7b the ver-

sion that uses 10 iteration steps seems like it will eventually

converge to a similar accuracy as the version that uses a sin-

gle optimization step, but does so at a much slower pace. (To

compare with “zero” steps, we also added SD as PGDd/O/0/G,
as it is the starting point for PGDd .) This is expected, as the
gain in accuracy decreases for each subsequent optimization

step, so after a limited number of steps a Shannon expan-

sion brings more improvement than further iterations. For

MB, the additional iterations add little improvement. More

possibilities are examined, but the choice is still randomly
made from an exponential number of possible bounds.

• By contrast, the choice of variable selection heuristic

has limited impact on the overall accuracy of the methods

(Fig. 8a): PGDd performs equally well as Occmax(O), Imax(I)
or Weighted Imax(WI). Whereas we expected the Imax
variants to make a more informed choice for selection, they

only take into account the lower bounds and require that the

influence be calculated one additional time after optimization.

This may still affect the accuracy but appears to make these

methods slower so the overall effect is diminished.

• The difference between local or global optimization
is also negligible (Fig. 8b). Global optimization gives slightly

better accuracy, which shows that the time invested in op-

timizing all the leaves before Shannon expanding pays off

more than investing in more frequent Shannon expansions.

Overall, the biggest factors are the (i) choice of bounding
method, where the new optimization-based methods vastly

outperform the existing ones, and (ii) the number of opti-
mization steps, which should be kept small for our methods

due to diminishing returns after the first optimization.

(3) Impact of data generation parameters. We next

analyze the impact of dataset parameters on the performance

for our new method (PGDd ) and the existing model-based

method (MB) using their winning configurations (Fig. 7c).

Our optimization-based methods consistently outperform the
prior methods for any query type, domain distribution, and
lineage complexities on the synthetic data set.

• Figure 8d compares the impact of the query type (chain,
cycle or star). On all three query types, our PGDd method

outperforms the MB version; it is particularly effective on

star queries, reducing the error to almost 0.

• Figure 8c shows the impact of the domain distribu-
tion used for drawing the probabilities. While exponentially

distributed probabilities make the problem noticeably harder,

the optimization-based method achieves consistently better

accuracies than the model-based approach.

7.3 Accuracy Tradeoffs on Synthetic Data
To analyze the impact of lineage size and problem difficulty

on the relative performance of PGDd and MB, we next (i) fix
the 3-chain query, (ii) uniformly sample probabilities from

(0, 0.1], (iii) vary the number of tuples, and (iv) keep the

domain size proportional to the number of tuples. We run

each method for 2 minutes (or until it converges and thus

performs exact probabilistic inference) and keep track of (1)

the size of the lineage (x-axis) and (2) when either method
reaches a particular accuracy threshold (y-axis).

Our optimization-based methods consistently outperform the
prior methods for any lineage size and lineage complexities,
at times by orders of magnitude.

Figure 9a shows the upper and lower bounds after the first

evaluation of PGDd . Figures 9b to 9d show the time / accuracy

tradeoffs for different lineage sizes. Each dot represents one

run achieving a certain accuracy threshold for the first time.

We bin similarly sized lineages; if more than half the points
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Figure 8: Section 7.2: Impact of variable selection strategy (a) and optimization strategy (b) are negligible. In contrast, query
types (c) and domain distribution (d) affect the approximation error for PGDd and MB. Yet the advantage of our new methods is
robust across all different regimes. Notice all plots show accuracy over time where a lower approximation error is better.
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Figure 9: Section 7.3: Probability bounds (a) and median time to reach a certain approximation with either PGDd or MB (b)-(d).
Our novel bounds allow us to reach the same accuracy by orders of magnitude faster than prior work (arrow illustrates 399×).

terminate, then we draw a summary point by taking the

median assuming the timed out points at or above 2 minutes.

The resulting contour lines then show the relative accuracy

/ time trade-offs between the methods over differently sized

lineages. We see that for no regime does MB return the ε
bound faster than PGD, whereas PGD is at times more than

2 orders of magnitude faster (MB times out, whereas PGD

returns in less than 100 msec). For very small lineages (up to

200), the methods can still "converge", i.e., they decompose

the lineage completely and thus perform exact inference. For

very large lineages, when the probability becomes close to 1,

then the lower bounds become high enough for all methods

to give immediate good estimates.

7.4 Yago & TPC-H
Yago. The Yago3 core dataset is originally an RDF dataset

consisting of 55 million subject-predicate-object triples ex-

tracted from Wikipedia infoboxes. To turn the RDF dump of

Yago3 into suitable input relations, over which self-join free

queries can be posed, we horizontally partition the dataset

into 79 relations based on the distinct predicates they contain.

We examine four Boolean queries (Y1, Y2, Y3, Y4), where Y1

is an instantiation of the simplest template for an intractable

query and consists of a three-way join between the relations
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Figure 10: Section 7.4: Accuracy over time results over Yago3
and TPC-H, where a lower approximation error is better.We
used the best configuration for each optimization method.

livesIn, worksAt and graduatedFrom. All other queries are
joins over the relations isMarriedto, actedIn, directed
and livesIn, combined in different ways with edited and
hasWonPrize. The precise queries are reported in the Appen-
dix. To enlarge the class of queries, we additionally inject 3

different constants per query. Combined with the selections

of a number of query plans and random seeds, as explained

in Sect. 7.1, we report findings on 765 different lineages.

TPC-H. For the TPC-H dataset, we consider the Boolean

versions of five queries (Q2B, Q9B, Q20B, Q21B, Q20WB)



from the original TPC-H benchmark, for which inference is

hard. Here, Q20B is a join over part, supplier, partsupplier,
and nation, to which Q2B adds region. Q21B is a join on

supplier, lineitem, orders and nation, to which Q9B also

adds part and partsupplier. These four queries2 were also
used in [34]. In addition, Q20WB is a variant of Q20B used in

[20]. Just as for Yago3, we draw probabilities from a uniform,

normal and exponential distribution, each initialized with 5

different seeds. We report findings on 975 different lineages.

The optimization-based methods (PGDd and CGDd) still out-
perform the model-based (MB) and symmetric dissociation-
based (SD)methods (reduction of error by 42% and 60% against
MB after 30 seconds, on average) on real datasets. In contrast
to the synthetic experiments, the SD method performs here
noticeably better than (MB).

8 RELATEDWORK
A plethora of approximation techniques for probabilistic

query evaluation and inference have been developed over

the past decades. Most related to our work are the following.

Sampling. Among the first approaches that introduced

approximate confidence computations in probabilistic data-

bases are the works by Ré and Suciu [37] in the context of

the MystiQ [6, 40] system. Here, the authors employ a form

of importance sampling based on the Monte-Carlo algorithm

developed by Karp, Luby and Madras [28] for Boolean for-

mulas in disjunctive normal form (DNF). Their work [40]

also is the first PDB approach to develop a top-k pruning

algorithm (coined “multi-simulation”) based on lower and

upper bounds for the marginal probabilities of the answer

candidates. This line of works also led to the development

of more principled criteria for efficient query answering

in PDBs [8, 38] and the dichotomy theorem [9], which dis-

tinguishes among safe and non-safe query plans based on

syntactic properties of the queries. We do not compare to

sampling as SPROUT [16, 17], which is a special case of our

method, was shown to outperform sampling-based methods.

KnowledgeCompilation.Olteanu et al. [15, 32, 33] stud-
ied the application of knowledge-compilation techniques

[11], first in the form of ordered binary decision diagrams

(OBBDs) and later by own compilation techniques, in the

context of the MayBMS [2] and SPROUT [34] systems. By focus-

ing on OBDDs [32], their goal is to compile an entire lineage

formula into a single OBDD, for which inference can then

be performed in linear time in the size of the OBDD. This

approach is not feasible for intractable queries, and we, by

contrast, require incremental compilation of lineages.

IncrementalCompilation.Ourwork is strongly inspired
by the incremental compilation framework of [16, 17, 35]:

2
http://www.cs.ox.ac.uk/dan.olteanu/papers/icde09queries.html

it compiles lineages into d-trees and uses model-based ap-

proximations. While finding the best model-based bounds

is a discrete optimization problem exponential in the num-

ber of variables, (i) our upper bounds are unique and prov-

ably better than any of the exponential many model-based

bounds; (ii) our lower bounds form a continuum of bounds

with model-based bounds as special cases at the ends of the

continuum. Embedding the problem into a continuous space
allows us to use a variant of the work-horse for continuous op-
timization: a variant of gradient-descent. This allows us to
get better bounds before each decomposition step in practice,

and to thus finish the incremental compilation earlier.

Dissociation. The model-based bounds of [16, 17, 35],

which rewrite a Boolean formula into 1OF [44], are in fact a

special case of the recently developed dissociation bounds [19–

21]. Both can in turn be seen as a specific form of the Relax,

Compensate, Recover framework by Choi and Darwiche [10],

i.e., the idea to approximate a computationally hard problem

by a relaxed instance of the problem, and then to compensate

and recover the relaxed instance by incrementally moving

back to the harder instance. As opposed to all existing works

on both lineage-based and plan-level dissociations, we here

investigate various non-uniform scaling approaches under

given constraints.

Variable Elimination. Variable ordering in OBDDs [41],

finally, is related to the considerations we take for variable

elimination via Shannon expansions. For the latter, we how-

ever employ a form of sensitivity analysis [27] that has not

been considered in [16, 17, 35] before. Moreover, as opposed

to the static ordering considered in [41], our choice of the

next variable to be eliminated is dynamically recomputed

with every compilation step.

9 CONCLUSION
We propose an anytime approximation framework for proba-

bilistic query evaluation that encompasses and generalizes

prior state-of-the-art methods. We develop novel scaled dis-
sociation bounds which are provably better than priormodel-
based (MB) or symmetric dissociation (SD) bounds, and show

how they seamlessly integrate with an iterative compilation

method. Through extensive experimentation, we confirm

that our approach robustly outperforms prior work. While

implemented for self-join conjunctive queries, our approach

is more general as it relies only on Boolean expressions as

input. Model-based approximation techniques are widely

used in neighboring disciplines, such as statistical relational

learning (SRL), weighted model counting (WMC), and gen-

eral probabilistic inference. Further investigation is required

to see how our framework can be applied in those areas too.
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A IMPLEMENTATION ISSUES
For both gradient methods, we need to set step sizes (ηt ) and
compute the gradient in each step.

http://www.tpc.org/tpch/


Step size. The correctness of gradient methods relies on

selecting appropriate step sizes. That is, step sizes should be

selected, such that (i) Gφ ′(α (t+1)) < Gφ ′(α (t )), and (ii) limit

points of the sequenceα (t ) are so-called stationary pointsα⋆
,

i.e., points for which ∇Gφ ′(α⋆)′ · (α − α⋆) ≥ 0, for every

α ∈ ∆ (see [4] for more details). This is the best one can

hope for, since (local) minima of Gφ ′ are necessarily found

at these stationary points. It is only when, e.g.,Gφ ′ is convex

that a stationary point is guaranteed to result in the global

minimum value.

Various methods exist for finding appropriate step sizes,

e.g., limitedminimization, Armijo rules, and other line-search

methods [4]. These methods all rely on the evaluation ofGφ ′

in multiple points along the gradient direction, to ensure that

conditions (i) and (ii) are met. As observed earlier, although

evaluating Gφ ′ is in PTIME, the time complexity depends on

the size of the 1OF lineage φ ′. In realistic settings, the size

of φ ′ can be large (Fig. 5) and the evaluation of Gφ ′ causes a

substantial overhead.

We can show, however, that there exists a constant L > 0

(called a Lipschitz constant), such that for any α , β ∈ ∆,
the inequality ∥∇Gφ ′(α ) − ∇Gφ ′(β)∥2 ≤ L∥α − β ∥2 holds.

Furthermore, the Lipschitz constant L only depends on the

original probabilities of the variables in φ and on the num-

ber of their occurrences di and can be easily computed (see

Appendix B). This implies that we can choose step sizes as

follows:

• constant step size 0 < ηt ≤ 2/L for PGD (Prop. 3.3.2

in [4])

• diminishing step sizeηt := min

{
1,
∇Gφ′ (α

(t ))′ ·(γ (t )−α (t ))

2nL

}
for CGD (Ex. 3.2.5 in [4])

It is then guaranteed that convergence points of PGD and

CGD are indeed stationary points. More importantly, by

setting ηt as described above, we avoid costly computations

of Gφ ′ at intermediate points along the gradient direction in

each step of the methods. This is crucial for the application
of gradient methods in the overall anytime approximation

algorithm.

Gradient computation. The gradient ∇Gφ ′ of Gφ ′ con-

sists of the partial derivatives

∂Gφ′

∂αi j
(·), which in turn are

equal to ln(p̄(xi ))(1 − x ′i j )
αi j inflx ′i j ,φ ′(·). This is immediate

from applying the chain rule of derivatives and our form of

variable substitution. This close relationship to the influence
of variables (Sect. 2), and the fact that φ ′ is in 1OF implies

that the gradient can be efficiently computed [27].

B EXISTENCE OF LIPSCHITZ CONSTANT
We show that the objective function Gφ ′ : Rn → R in the

optimization problem (SLB
′
) in Sect. 4 satisfies the Lipschitz

condition. More precisely, we show the following theorem.

Theorem 2. Let φ ′ be a dissociation of φ obtained by dis-
sociation the n variables x1, . . . , xn in φ. Let

L := max

i ∈[n]

{
ln(p̄i )

2 + (di − 1) ln(p̄i )
2p̄1/di

i

+

n∑
j=1

j,i

dj ln(p̄i ) ln(p̄j )p̄
1/dj
j

}
,

wheredi = |θ−1(xi )| for θ the substitution such thatφ ′[θ ] = φ,
and pi denotes the probability of xi , for i ∈ [n]. Then, for any
α , β ∈ ∆,

∥∇Gφ ′(α ) − ∇Gφ ′(β)∥2 ≤ L∥α − β ∥2 (2)

The theorem is shown by bounding the spectral radius

ρ
(
JGφ′ (α , β)

)
of the Jacobian of Gφ ′ by the value L defined

in the statement of the Theorem. We recall that the spec-

tral radius is the largest (in absolute value) eigenvalue of

the Jacobian. It is known that this suffices for showing the

inequality (2).

Proof. (Sketch) Recall that Gφ ′(α , β) is defined in terms

of function Fφ ′(x, y) = Px,y(φ ′). It is known (see [27, 39])

that Fφ ′(x, y) is a multi-linear function and furthermore that

∂Fφ′
∂z (x, y) = Px,y(φ

′[z/1]) − Px,y(φ
′[z/0]) for each variable

z ∈ x ∪ y. Since in our setting, φ ′ is a positive formula,

i.e., each literal appears positive (i.e., not negated), one can

verify that 0 ≤ Px,y(φ
′[z/0]) ≤ Px,y(φ

′[z/1]) and hence

∂Fφ′
∂z (x, y) ∈ [0, 1]. Since we are working with Gφ ′ rather

than Fφ ′ , we first relate the partial derivatives of Gφ ′ to

those of Fφ ′ . Using the chain rule for derivatives, we ob-

tain:

∂Gφ′

∂αi
(α , β) := ln(p̄)p̄αi

∂Fφ′
∂xi
(1 − p̄α , 1 − q̄β ), for i ∈ [d],

and

∂Gφ′

∂βi
(α , β) := ln(q̄)q̄βi

∂Fφ′
∂yi
(1 − p̄α , 1 − q̄β ), for i ∈ [e].

Since ln(p̄) ≤ 0 and ln(q̄) ≤ 0, our earlier observation

implies that ln(p̄)p̄αi ≤
∂Gφ′

∂αi
(α , β) ≤ 0 and ln(q̄)q̄βi ≤

∂Gφ′

∂βi
(α , β) ≤ 0. We next inspect the elements of the Jacobian

ofGφ ′ by computing its second order derivatives. It is readily

verified that: aii :=
∂2Gφ′

∂α 2

i
(α , β) = −(ln(p̄))2p2αi ∂

2Fφ′
∂x 2

i
(1 −

p̄α , 1− q̄β )+ (ln(p̄))2p̄αi
∂Fφ′
∂xi
(1−p̄α , 1− q̄β )which is equal to

(ln(p̄))2p̄αi
∂Fφ′
∂xi
(1−p̄α , 1− q̄β ), where we used that

∂2Fφ′
∂x 2

i
(1−

p̄α , 1 − q̄β ) = 0 (multi-linearity of Fφ ′). Similarly, bii :=
∂2Gφ′

∂β 2

i
(α , β) = (ln(q̄))2p̄βi

∂Fφ′
∂yi
(1 − p̄α , 1 − q̄β ) and for i , j,

ai j :=
∂2Gφ′

∂α j ∂αi
(α , β) = −(ln(p̄))2p̄αi+α j

∂2Fφ′
∂x j ∂xi

(1 − p̄α , 1 − q̄β ),

bi j :=
∂2Gφ′

∂βj ∂βi
(α , β) = −(ln(q̄))2q̄βi+βj

∂2Fφ′
∂yj ∂yi

(1 − p̄α , 1 −

q̄β ), and ci j :=
∂2Gφ′

∂βj ∂αi
(α , β) = − ln(p̄) ln(q̄)p̄αi q̄βj

∂2Fφ′
∂yj ∂xi

(1 −

p̄α , 1 − q̄β ). We will bound the spectral radius of JGφ′ (α , β)
by means of Gershgorin’s circle theorem. This theorem tells



us that for each eigenvalue λ of JGφ′ (α , β), there exists a row

i such that when 1 ≤ i ≤ d , |λ −aii | ≤
∑d

j=1

j,i
|ai j | +

∑e
j=1
|ci j |,

and when 1 ≤ i ≤ e: |λ − bii | ≤
∑e

j=1

j,i
|bi j | +

∑d
j=1
|ci j |.

It remains to bound the entries aii , ai j , bii , bi j and ci j in
JGφ′ (α , β). We also point out that since the Jacobian is a

symmetric matrix all these eigenvalues are real. From our

earlier observation on the derivatives

∂Fφ′
∂xi

and

∂Fφ′
∂yi

it eas-

ily follows that aii ∈ [0, (ln(p̄)
2p̄αi ] and bii ∈ [0, (ln(q̄)

2q̄βi ].
Furthermore, for any x ∈ [0, 1]d and y ∈ [0, 1]e it is easily
verified that���� ∂2Fφ ′

∂x j∂xi
(x, y)

���� , ���� ∂2Fφ ′

∂yj∂xi
(x, y)

���� and ���� ∂2Fφ ′

∂yj∂yi
(x, y)

����
are all bounded by 1. Indeed, this following from the observa-

tion that, e.g.,

∂2Fφ′
∂x j ∂xi

(x, y) is given by (Px,y(φ
′[xi/1, x j/1]) −

Px,y(φ
′[xi/1, x j/0]))−(Px,y(φ

′[xi/0, x j/1])−Px,y(φ
′[xi/0, x j/0]))

where each of the terms take values in [0, 1] and further-

more, (Px,y(φ
′[xi/1, x j/1]) − Px,y(φ

′[xi/1, x j/0])) ≥ 0 and

(Px,y(φ
′[xi/0, x j/1]) − Px,y(φ

′[xi/0, x j/0])) hold because φ ′

is positive. As a consequence, |ai j | ≤ (ln(p̄))
2p̄αi+α j , |bi j | ≤

(ln(q̄))2q̄βi+βj , and |ci j | ≤ ln(p̄) ln(q̄)p̄αi q̄βj . Hence, each eigen-

value λ satisfies either |λ−aii | ≤
∑d

j=1

j,i
(ln(p̄))2p̄αi+α j+ln(p̄) ln(q̄)

p̄αi
(∑e

j=1
q̄βj

)
, for some i ∈ [1,d], or |λ −bii | ≤

∑e
j=1

j,i
(ln(q̄))2

q̄βi+βj + ln(q̄) ln(p̄)q̄βi
(∑d

j=1
p̄α j

)
, for some i ∈ [1, e]. We con-

tinue bounding the right-hand sides of these inequalities.

Consider first the sum s(α ) =
∑d

j=1
p̄α j . Following Example

3.1.2 in [4], s(α ) reaches a maximal value in ∆d at a pointα⋆

in which all non-zero entries have the same partial derivative

value and furthermore, the partial derivative at zero entries

are smaller than that value. Observe that
∂s
∂α j
(α⋆) = ln(p̄)p̄α

⋆
j

and hence to have equal derivatives, the non-zero entries in

α⋆
must be equal. Suppose that we have k non-zero entries

in α⋆
, each of which equal to 1/k . All remaining d − k en-

tries are zero, in which the partial derivative is ln(p̄) which
is smaller than ln(p̄)p̄1/k

since ln(p̄) is negative. As a conse-
quence, it suffices to check which of the candidate points

α⋆
maximises s . This in turn pours down to checking how

many non-zero entries α⋆
must have to maximise s . Ob-

serve now that s takes value kp̄1/k
at such points. Since

1/k > 1/(k + 1) implies ln(p̄)1/k < ln(p̄)1/(k + 1) and hence

p̄1/k < p̄1/(k+1)
, we have that s reaches a maximum when

k = d . This implies that a⋆i = 1/d for all i ∈ [d]. A similar

reasoning shows that

∑e
j=1

ln(q̄)q̄βj reaches it maximal value

in ∆e at a point β
⋆
such that β⋆i = 1/e for all i ∈ [e]. Hence,

we thus have that each eigenvalue λ satisfies either |λ−aii | ≤∑d
j=1

j,i
(ln(p̄))2p̄αi+α j + ln(p̄) ln(q̄)p̄αi eq̄1/e

for some i ∈ [1,d],

or |λ − bii | ≤
∑e

j=1

j,i
(ln(q̄))2q̄βi+βj + ln(p̄) ln(q̄)q̄βidp̄1/d

, for

some i ∈ [1, e]. Now, in these right-hand side expressions in

the inequalities we have only one type of variable left, i.e.,

either variables in α or β . We next find α⋆
(resp. β⋆

) that

maximise these expressions. Let us use the shorthand nota-

tion t(α ) for
∑d

j=1

j,i
(ln(p̄))2pαi+α j + ln(p̄) ln(q̄)eq̄1/ep̄αi . Again,

following Example 3.1.2 in [4], we identify conditions on α⋆
.

The partial derivatives of t(α ) are non-positive and given

by
∂t
∂αi
(α ) = (d − 1)(ln p̄)3p̄αi+α j + ln(p̄)2 ln(q̄)eq̄1/ep̄αi and

∂t
∂α j
(α ) = (ln p̄)3p̄αi+α j . Observe that ∂t

∂αi
(α ) < ∂t

∂α j
(α ) for

all j , i . Hence, in α⋆
we must have that α⋆

i = 0 and at such

points t is of the form
∑d

j=1

j,i
(ln(p̄))2pα j + ln(p̄) ln(q̄)eq̄1/e

. In a

similar way as above, it suffices to maximise

∑d
j=1

j,i
pα j , which

as argued earlier is obtained when each α⋆
j = 1/(d) for j , i .

The same holds for

∑e
j=1

j,i
(ln(q̄))2q̄βi+βj + ln(p̄) ln(q̄)q̄βidp̄1/d

,

where now β⋆j = 1/e for j , i . So, to summarize, we have that

each eigenvalue λ satisfies either |λ−aii | ≤ (d−1) ln(p̄)2p̄1/d+

e ln(p̄) ln(q̄)q̄1/e
for some i ∈ [1,d], or |λ − bii | ≤ (e −

1) ln(q̄)2q̄1/e + d ln(q̄) ln(p̄)p̄1/d
, for some i ∈ [1, e]. Com-

bined with the bounds on aii and bii , we may conclude

that each eigenvalue λ of JGφ′ (α , β) satisfies either |λ | ≤

ln(p̄)2 + (d − 1) ln(p̄)2p̄1/d + e ln(p̄) ln(q̄)q̄1/e
or |λ | ≤ ln(q̄)2 +

(e − 1) ln(q̄)2q̄1/e +d ln(q̄) ln(p̄)p̄1/d
. We may thus define L as

the maximum of these two values.

In general, when φ ′ is a dissociation of φ in which n vari-

ables x1, . . . , xn are dissociated, let di = |θ
−1(xi )| where θ is

the substitution such that φ ′[θ ] = φ. If pi denotes the prob-
ability of xi , for i ∈ [n], then the previous reasoning (for

n = 2) results in a Lipschitz constant L := maxi ∈[n]
{
ln(p̄i )

2 +

(di − 1) ln(p̄i )
2p̄1/di

i +
∑n

j=1

j,i
dj ln(p̄i ) ln(p̄j )p̄

1/dj
j

}
. □

C CORRECTNESS OF AAA
We verify the correctness of algorithm AAA (2 in Sect. 5).

Proposition 2. After each step of the algorithm AAA, every
leafψ in the d-tree has a 1OF-dissociationψ ′ and probability
functions pL and pU associated with it, such that PL[ψ ′] ≤
P[ψ ] ≤ PU [ψ

′] holds. Furthermore, the lower and upper bounds
never get worse at each step of the algorithm.

Proof. Recall that algorithm AAA starts from a lineage φ
and 1OF dissociation φ ′ (for substitution θ ) of φ. In addition,

lower and upper bound probability functions pL and pU are

provided such that PpL (φ
′) ≤ Pp (φ) ≤ PpU (φ

′) holds. During

a run of the algorithm φ gets decomposed in a d-tree, and

furthermore, φ ′ gets decomposed along the way in precisely



the same way. Assume that AAA has run for a number of iter-

ations and assume that when looking at each leaf ψ in the

current d-treeφ, there is a corresponding 1OF dissociationψ ′

ofψ and probability functions pL and pU for the variables in

ψ ′ such that PpL (ψ
′) ≤ Pp (ψ ) ≤ PpU (ψ

′) is satisfied.We need

to show that at the end of the current iteration of the algo-

rithm, the updated d-trees φ, φ ′ and probability functions pL
and pU at the leaves still satisfy PpL (ψ

′) ≤ Pp (ψ ) ≤ PpU (ψ
′),

and this for every leafψ ′ (in φ ′) andψ (in φ). We also recall

that, as described in section 5, that when we consider PL and
PU as the collection of all functions pL and pU , respectively,
in the leaves of φ ′, we have PPL (φ

′) ≤ Pp (φ) ≤ PPU (φ
′). We

also show that the bounds never get worse after an iteration

of AAA. For starters, let us explore how procedure Optimize-
Bounds impact the d-trees and functions under considera-

tion. As described in Sect. 5 this procedure simply updates

the probability functions pL (into p ′L) and pU (into p ′U ) at
the leaves of the current d-tree, and the proposed update is

only accepted when it does not revise the current bounds,

PpL (ψ
′) ≤ Pp (ψ ) ≤ PpU (ψ

′), for the worse. Clearly, this im-

plies that PpL (ψ
′) ≤ Pp′L (ψ

′) and Pp′U (ψ
′) ≤ PpU (ψ

′) for all

leaves. Furthermore, since OptimizeBounds is expected to

update probability functions in accordance to the conditions

stated in Theorem 1, and the procedure does not change the

d-trees (only probability functions associated with leaves are

changed), Pp′L (ψ ) ≤ Pp (ψ ) ≤ Pp
′
U
(ψ ′) is still satisfied after

the call to procedure OptimizeBounds. So, after the call to
OptimizeBounds all our desired properties remain satisfied.

It remains to inspect the impact of decompositions (⊗ or

⊙) and Shannon expansions (⊕). We consider each leafψ and

corresponding 1OF dissociationψ ′ in isolation.

• Independent “or” (⊗): Here,ψ = ψ1 ∨ψ2 with vars(ψ1)∩

vars(ψ2) = ∅. The same holds for its 1OF dissociation, i.e.,

ψ ′ = ψ ′
1
∨ψ ′

2
with vars(ψ ′

1
) ∩ vars(ψ ′

2
) = ∅. By considering,

for i = 1, 2, the substitution θi = θ |θ−1(vars(ψi )), the restriction

of θ to the variables inψ ′ that map to variables inψi , is such
thatψ ′i [θi ] = ψi . Hence, for i = 1, 2,ψ ′i is a 1OF dissociation
ofψi . Furthermore, by defining piL and piU as the probability

functions obtained by restricting pL and pU , respectively, to
the variables inψ ′i , it easily follows that the conditions of The-
orem 1 remain satisfied, i.e., PpiL

(ψ ′i ) ≤ P[ψi ] ≤ PpiU
(ψ ′i ).

• Independent “and” (⊙): This case is completely anal-

ogous to the previous case, but using ψ = ψ1 ∧ ψ2 with

vars(ψ1) ∩ vars(ψ2) = ∅ and dissociationsψ ′ = ψ ′
1
∧ψ ′

2
with

vars(ψ ′
1
) ∩ vars(ψ ′

2
) = ∅ instead.

So, 2 holds after ⊗ and ⊙ decomposition. Furthermore,PpL (ψ
′) =

Pp1

L
(ψ ′

1
)⊗Pp2

L
(ψ ′

2
) and PpU (ψ

′) = Pp1

U
(ψ ′

1
)⊗Pp2

U
(ψ ′

2
) in case of

an independent “or” decomposition, and similarly, PpL (ψ
′) =

Pp1

L
(ψ ′

1
) · Pp2

L
(ψ ′

2
) and PpU (ψ

′) = Pp1

U
(ψ ′

1
) · Pp2

U
(ψ ′

2
) in case of

an independent “and” decomposition. In other words, the

lower and upper bounds remain the same. Lifting this to the

lineages φ and φ ′, the probability of PPL (φ
′) and PPU (φ

′) are

unchanged after such decompositions. We next explore what

happens after a Shannon expansion.

• Shannon expansions (⊕): Let us assume that a leafψ in

d-tree φ and variable x ∈ vars(ψ ) is selected. Then, ψ gets

decomposed as (x ⊙ ψ1) ⊕ (¬x ⊙ ψ2) with ψ1 = ψ [1/x] and
ψ2 = ψ [0/x]. We have Pp (ψ ) = p(x) · Pp (ψ1) + p̄(x) · Pp (ψ2).

We let ψ ′
1
be the 1OF formula obtained from ψ ′ by setting

all variables xi , such that θ (xi ) = x , to true; similarly, ψ ′
2
is

the 1OF formula obtained from ψ ′ by setting all variables

xi , such that θ (xi ) = x , to false. We let θ ′ be the restriction
of θ to those variables in ψ that do not map to x . Clearly,
ψ ′

1
[θ ′] = ψ1 and ψ ′

2
[θ ′] = ψ2. Recall that we assume that

vars(ψ ′
1
) ∩ vars(ψ ′

2
) = ∅. We can always ensure this by apply-

ing a variable renaming. Letψ ′
2
also denote the formula (after

this possible renaming), then clearly, there is a substitution

θ2 = θ
′◦ρ (with ρ being the renaming) such thatψ ′

2
[θ2] = ψ2.

We refer to θ ′ as θ1 such that ψ ′
1
[θ1] = ψ1. For pL and pU ,

we decompose them as expected, i.e., restrict them to the

relevant variables (taking the renaming ρ into account). It

is again easily verified that Pp1

L
(ψ ′

1
) ≤ P[ψ1] ≤ Pp1

U
(ψ ′

1
) and

Pp2

L
(ψ ′

2
) ≤ P[ψ2] ≤ Pp1

U
(ψ ′

2
), because the condition of Theo-

rem 1 are satisfied. So, 2 holds after Shannon expansion.

We still need to show that after Shannon expansion the

bounds did not deteriorate. We already known from the pre-

vious analysis that p(x) · Pp1

L
(ψ ′

1
)+ p̄(x) · Pp2

L
(ψ ′

2
) ≤ P[ψ ] and

similarly P[ψ ] ≤ p(x) · Pp1

U
(ψ ′

1
) + p̄(x) · Pp2

U
(ψ ′

2
). It remains

to show that PpL (ψ
′) ≤ p(x) · Pp1

L
(ψ ′

1
) + p̄(x) · Pp2

L
(ψ ′

2
) and

p(x)·Pp1

U
(ψ ′

1
)+p̄(x)·Pp2

U
(ψ ′

2
) ≤ PpU (ψ

′) hold. Indeed, if these

hold then PpL (ψ
′) ≤ p(x)·Pp1

L
(ψ ′

1
)+p̄(x)·Pp2

L
(ψ ′

2
) ≤ P[ψ ], and

similarly, P[ψ ] ≤ p(x) · Pp1

U
(ψ ′

1
) + p̄(x) · Pp2

U
(ψ ′

2
) ≤ PpU (ψ

′).

In other words, the bounds do not get worse. Observe that

p(x)·Pp1

L
(ψ ′

1
)+p̄(x)·Pp2

L
(ψ ′

2
) andp(x)·Pp1

U
(ψ ′

1
)+p̄(x)·Pp2

U
(ψ ′

2
)

can be seen as the probability of a Boolean formula ξ , for
whichψ ′ is a dissociation to which Theorem 1 applies. From

this, the inequalities then follow. The formula ξ is simply

ψ ′[x/x ′], the formulaψ ′ in which each dissociated variable

x ′ ∈ θ−1(x) is replaced by x . It is easily verified that for

probability function p ′L such that p ′L(x) = p(x), p
′
L(y) = p

1

L(y)
for variables y inψ ′

1
, and p ′L(y) = p

2

L(y) for variables y inψ ′
2
,

and p ′U such that p ′U (x) = p(x), p
′
U (y) = p

1

U (y) for variables

y in ψ ′
1
, and p ′U (y) = p2

U (y) for variables y in ψ ′
2
, we have

that Pp′L (ξ ) = p(x) · Pp1

L
(ψ ′

1
) + p̄(x) · Pp2

L
(ψ ′

2
) and Pp′U (ξ ) =

p(x) · Pp1

U
(ψ ′

1
) + p̄(x) · Pp2

U
(ψ ′

2
), as desired. We can now ap-

ply Theorem 1 for dissociation ψ ′ of ξ and the probability

functions defined above. This results in PpL (ψ
′) ≤ Pp′L (ξ )

and PpU (ψ
′) ≥ Pp′U (ξ ), from which the desired inequalities

follow. Hence, also after a Shannon expansion the bounds

never get worse. □
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